Reliability and Validity of Three Clinical Methods to Measure Lower Extremity Muscle Power

Mattie E. Pontiff, Li Li, Noelle G. Moreau

Abstract


Background: Lower extremity muscle power is critical for daily activities and athletic performance in clinical populations. Objective: The purpose of this study was to determine the reliability and validity of 3 clinically feasible methods to measure lower extremity muscle power during a leg press. Methods: Ten of 26 subjects performed 2 sessions of 5 submaximal leg presses separated by 3-7 days in this repeated-measures cross-sectional design; the remaining performed 1 test session. Power was calculated independently for each method [simple video, linear position transducer, and accelerometer] and compared to the reference force plate. Test-retest reliability was evaluated using intraclass correlation coefficients (ICC). Pearson’s correlation coefficient (r), Bland-Altman plots with 95% limits of agreement (LOA), and mean bias percentages (%) were used to determine relative and absolute validity. Results: Power measures were reliable for all methods (ICC=.97-.99). All were highly correlated with the force plate (r=.96-.98). Mean bias was -0.8% (LOA: -16.57% to 14.98%) (video), -13.21% (LOA: -23.81% to -2.61%) (position transducer) compared to the force plate. Proportional bias was observed for accelerometry. Conclusion: All methods were reliable and highly correlated with the force plate. Only the video and position transducer demonstrated absolute validity. The position transducer was the most feasible method because of its simplicity and accuracy in measuring power.

Keywords


Lower Extremity, Accelerometry, Muscles, Transducers, Weight Lifting

Full Text:

PDF

References


Ageberg, E., & Roos, E. M. (2016). The Association Between Knee Confidence and Muscle Power, Hop Performance, and Postural Orientation in People With Anterior Cruciate Ligament Injury. Journal of Orthopedic and Sports Physical Therapy, 46(6), 477-482. doi:10.2519/jospt.2016.6374

Astorino, T. A., & Cottrell, T. (2012). Reliability and validity of the velotron racermate cycle ergometer to measure anaerobic power. International Journal of Sports Medicine, 33(3), 205-210. doi:10.1055/s-0031-1291219

Bean, J., Kiely, D. K., Herman, S., Leveille, S., Mizer, K., Frontera, W. R., & Fielding, R. A. (2002). The relationship between leg power and physical perofmrance in mobility-limited older people. Journal of the American Geriatric Society, 50(3), 461-467. doi: 10.1046/j.1532-5415.2002.50111.x

Bean, J., Leveille, S., Kiely, D. K., Bandinelli, S., Guralnik, J., & Ferrucci, L. (2003). A comparison of leg power and leg strength within th InCHIANTI study: which influences mobility more? Journal of Gerontology 58A(8), 728-733. doi: 10.1093/gerona/58.8.m728

Bland, J., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 1(8476), 307-310. doi: http://dx.doi.org/10.1016/j.ijnurstu.2009.10.001

Choukou, M. A., Laffaye, G., & Taiar, R. (2014). Reliability and validity of an accele-rometric system for assessing vertical jumping performance. Biology of Sport, 31(1), 55-62. doi:10.5604/20831862.1086733

Corti, M., McGuirk, T. E., Wu, S. S., & Patten, C. (2012). Differential effects of power training versus functional task practice on compensation and restoration of arm function after stroke. Neurorehabil Neural Repair, 26(7), 842-854. doi:10.1177/1545968311433426

Crewther, B. T., Kilduff, L. P., Cunningham, D. J., Cook, C., Owen, N., & Yang, G. Z. (2011). Validating two systems for estimating force and power. International Journal of Sports Medicine, 32(4), 254-258. doi:10.1055/s-0030-1270487

de Salles, B. F., Simao, R., Miranda, F., Novaes Jda, S., Lemos, A., & Willardson, J. M. (2009). Rest interval between sets in strength training. Sports Medicine, 39(9), 765-777. doi:10.2165/11315230-000000000-00000

Dorsch, S., Ada, L., & Alloggia, D. (2018). Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. Journal of Physiotherapy, 64(2), 84-90. doi:10.1016/j.jphys.2018.02.012

Flosadottir, V., Roos, E. M., & Ageberg, E. (2016). Muscle function is associated with future patient-reported outcomes in young adults with ACL injury. British Medical Journal Open Sport & Exercise Medicine, 2(1), 1-8. doi:10.1136/bmjsem-2016-000154

Garcia-Ramos, A., Stirn, I., Strojnik, V., Padial, P., De la Fuente, B., Arguelles-Cienfuegos, J., & Feriche, B. (2016). Comparison of the force-, velocity-, and power-time curves recorded with a force plate and a linear velocity transducer. Sports Biomechanics, 15(3), 329-341. doi:10.1080/14763141.2016.1161821

Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica (Zagreb), 25(2), 141-151. doi:10.11613/BM.2015.015

Giroux, C., Rabita, G., Chollet, D., & Guilhem, G. (2015). What is the best method for assessing lower limb force-velocity relationship? International Journal of Sports Medicine, 36(2), 143-149. doi:10.1055/s-0034-1385886

Gomez-Piraz, P. S., E.; Manrique, D.; Gonzalez, E. (2013). Reliability and comparability of the accelerometer and the linear position measuring device in resistance training. Journal of Strength and Conditioning Research, 27(6), 1664-1670. doi:10.1519/JSC.0b013e318269f809

Gorostiaga, E. M., Navarro-Amezqueta, I., Calbet, J. A., Hellsten, Y., Cusso, R., Guerrero, M., . . . Izquierdo, M. (2012). Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One, 7(7), 1-9. doi:10.1371/journal.pone.0040621

Hori, N., Newton, R. U., Andrews, W. A., Kawamori, N., McGuigan, M. R., & Nosaka, K. (2007). Comparison of four different methods to measure power output during the hang power clean and the weighted jump squat. Journal of Strength and Conditioning Research, 21(2), 314-320. doi:10.1519/r-22896.1

Kuo, H., Leveille, S., Yen, C., Chai, H., Chang, C., Yeh, Y., . . . Bean, J. (2006). Exploring how peak leg power and usual gait speed are linked to late-life disability. American Journal of Physical Medicine and Rehabilitation 85(8), 650-658. doi: 10.1097/01.phm.0000228527.34158.ed

Moreau, N. G., & Gannotti, M. E. (2015). Addressing muscle performance impairments in cerebral palsy: Implications for upper extremity resistance training. Journal of Hand Therapy, 28(2), 91-99; quiz 100. doi:10.1016/j.jht.2014.08.003

Moreau, N. G., Holthaus, K., & Marlow, N. (2013). Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabilitation and Neural Repair, 27(4), 325-334. doi:10.1177/1545968312469834

Regterschot, G. R., Folkersma, M., Zhang, W., Baldus, H., Stevens, M., & Zijlstra, W. (2014). Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults. Gait & Posture, 39(1), 303-307. doi:10.1016/j.gaitpost.2013.07.122

Regterschot, G. R., Zhang, W., Baldus, H., Stevens, M., & Zijlstra, W. (2014). Test-retest realiability of sensor-based sit-to-stand measures in young and older adults Gait & Posture, 40(1), 220-224. doi:0.1016/j.gaitpost.2014.03.193

Regterschot, G. R., Zhang, W., Baldus, H., Stevens, M., & Zijlstra, W. (2016). Accuracy and concurrent validity of a sensor-based analysis of sit-to-stand movements in older adults. Gait & Posture, 45, 198-203. doi:10.1016/j.gaitpost.2016.02.004

Reid, K. F., Pasha, E., Doros, G., Clark, D. J., Patten, C., Phillips, E. M., . . . Fielding, R. A. (2014). Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. European Journal of Applied Physiology, 114(1), 29-39. doi:10.1007/s00421-013-2728-2

Samozino, P., Morin, J. B., Hintzy, F., & Belli, A. (2008). A simple method for measuring force, velocity and power output during squat jump. Journal of Biomechanics, 41(14), 2940-2945. doi:10.1016/j.jbiomech.2008.07.028

Scianni, A., Butler, J. M., Ada, L., & Teixeira-Salmela, L. F. (2009). Muscle strengthening is not effective in children and adolescents with cerebral palsy: a systematic review. Austrailian Journal of Physiotherapy, 55(2), 81-87. doi:10.1016/s0004-9514(09)70037-6

Skelton, D. A., Kennedy, J., & Rutherford, O. M. (2002). Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age and Ageing, 39(2), 119-125. doi: 10.1093/ageing/31.2.119

Tevald, M. A., Murray, A. M., Luc, B., Lai, K., Sohn, D., & Pietrosimone, B. (2016). The contribution of leg press and knee extension strength and power to physical function in people with knee osteoarthritis: A cross-sectional study. Knee, 23(6), 942-949. doi:10.1016/j.knee.2016.08.010

Thompson, C. J., & Bemben, M. G. (1999). Reliability and comparability of the accelerometer as a measure of muscular power. Medicine in Science Sports and Exercise, 31(6), 897-902. doi:10.1097/00005768-199906000-00020

Tschopp, M., Sattelmayer, M. K., & Hilfiker, R. (2011). Is power training or conventional resistance training better for function in elderly persons? A meta-analysis. Age and Ageing, 40(5), 549-556. doi:10.1093/ageing/afr005

Zijlstra, W., Bisseling, R. W., Schlumbohm, S., & Baldus, H. (2010). A body-fixed-sensor-based analysis of power during sit-to-stand movements. Gait & Posture, 31(2), 272-278. doi:10.1016/j.gaitpost.2009.11.003




DOI: http://dx.doi.org/10.7575/aiac.ijkss.v.9n.1p.1

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2021 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.