Biochemical and Structural Alterations in Skeletal Muscle Following ACL Injury: A Narrative Review

Trenton Reyes, Darryn S. Willoughby

Abstract


Background: Anterior cruciate ligament (ACL) injuries are some of the most common knee injuries that occur in the US, accounting for around 200,000 documented cases per year. Varying levels of severity can determine whether surgery is required or if physical therapy will suffice. One of the most common complications for patients is that there is significant atrophy of the impacted limb. Yet, there has not been definitive proof explaining this mechanism. Objective: The primary goal for this review was to examine some of the biochemical differences that tend to occur within and surrounding an ACL injury and the mechanisms involved in skeletal muscle atrophy and regenerative capabilities. Outcome: Multiple studies have found a connection between time spent inactive from the injury and the percentage of retained muscle after exercising again. Among decreases in muscle mass and muscle volume changes, analyses have also revealed alterations in alpha-2 macroglobulin, myostatin, heat shock protein-72, mechano GF-C24E, synovial fluid, and histochemical alterations in collagen and cartilaginous states which all seem to be primary factors in regulating effectiveness and speed of recovery from ACL injury. Conclusion: the influx of various cytokines as a response to the initial injury in relation to inflammation change the chemical and physical environment of the knee, making recovery significantly more difficult and time-consuming. Timing of injury, surgery, and re-initiation of movement after surgery are very important factors that can minimize overall damage and reduce recovery time.

Keywords


Anterior Cruciate Ligament, Collagen, Satellite Cells, Heat Shock Protein, Synovial Fluid, Musculoskeletal

Full Text:

PDF

References


Bigoni, M., Turati, M., Gandolla, M., Sacerdote, P., Piatti, M., Castelnuovo, A., … Torsello, A. (2016). Effects of ACL Reconstructive Surgery on Temporal Variations of Cytokine Levels in Synovial Fluid. Mediators of Inflammation, 2016(2016), 7. http://dx.doi.org/10.1155/2016/8243601

Demirag, B., Sarisozen, B., Ozer, O., Kaplan, T., & Ozturk, C. (2005). Enhancement of Tendon-Bone Healing of Anterior Cruciate Ligament Grafts by Blockage of Matrix Metalloproteinases. The Journal of Bone & Joint Surgery, 87-A(11), 10. https://doi.org/10.2106/JBJS.D.01952

Evans, S, Shaginaw, F, & Bartolozzi, A. (2014). ACL reconstruction - It's all about timing. International Journal of Sports Physical Therapy, 9(2), 268-273.

Fry, C. S., Johnson, D. L., Ireland, M. L., & Noehren, B. (2017). ACL injury reduces satellite cell abundance and promotes fibrogenic cell expansion within skeletal muscle. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 35(9), 1876–1885. https://doi.org/10.1002/jor.23502

Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., … Lynch, G. S. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394), 394–398. https://doi.org/10.1038/nature10980

Hauger, A. V., Reiman, M. P., Bjordal, J. M., Sheets, C., Ledbetter, L., & Goode, A. P. (2018). Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 26(2), 399–410. https://doi.org/10.1007/s00167-017-4669-5

Hong Li, Chen Chen, & Shiyi Chen. (2015). Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: Potential biochemical mediators of degenerative alteration and specific biochemical markers (Review). Biomedical Reports, 3(2), 147–151. https://doi.org/10.3892/br.2014.404

Hsieh, Y.-L., & Yang, C.-C. (2018). Early intervention of swimming exercises attenuate articular cartilage destruction in a rat model of anterior cruciate ligament and meniscus knee injuries. Life Sciences, 212, 267–274. https://doi.org/10.1016/j.lfs.2018.10.013

Kaplan, D. J., Cuellar, V. G., Jazrawi, L. M., & Strauss, E. J. (2017). Biomarker Changes in Anterior Cruciate Ligament–Deficient Knees Compared With Healthy Controls. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33(5), 1053–1061. https://doi.org/10.1016/j.arthro.2016.11.019

Larsson, S., Struglics, A., Lohmander, L. S., & Frobell, R. (2017). Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: An exploratory analysis in the KANON trial. Osteoarthritis and Cartilage, 25(9), 1443–1451. https://doi.org/10.1016/j.joca.2017.05.009

Lattermann, C., Conley, C. E.-W., Johnson, D. L., Reinke, E. K., Huston, L. J., Huebner, J. L., … Jacobs, C. A. (2018). Select Biomarkers on the Day of Anterior Cruciate Ligament Reconstruction Predict Poor Patient-Reported Outcomes at 2-Year Follow-Up: A Pilot Study. BioMed Research International, 2018(2018), 9. https://doi.org/10.1155/2018/9387809

Macleod, T. D., Snyder-Mackler, L., & Buchanan, T. S. (2014). Differences in Neuromuscular Control and Quadriceps Morphology Between Potential Copers and Noncopers Following Anterior Cruciate Ligament Injury. The Journal of Orthopaedic and Sports Physical Therapy, 44(2), 76–84. https://doi.org/10.2519/jospt.2014.4876

Mantashloo, Z., Letafatkar, A., & Moradi, M. (2019). Vertical ground reaction force and knee muscle activation asymmetries in patients with ACL reconstruction compared to healthy individuals. Knee Surgery, Sports Traumatology, Arthroscopy, 2019(1), 6. https://doi.org/10.1007/s00167-019-05743-5

Mooren, F. C., & Volker, K. (2005). Molecular and Cellular Exercise Physiology (1st ed.). Human Kinetics.

Moresi, V., Garcia-Alvarez, G., Pristerà, A., Rizzuto, E., Albertini, M. C., Rocchi, M., … Coletti, D. (2009). Modulation of Caspase Activity Regulates Skeletal Muscle Regeneration and Function in Response to Vasopressin and Tumor Necrosis Factor. PLoS ONE, 4(5), e5570. https://doi.org/10.1371/journal.pone.0005570

Neuman, P., Dahlberg, L. E., Englund, M., & Struglics, A. (2017). Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthritis and Cartilage, 25(4), 492–498. https://doi.org/10.1016/j.joca.2016.09.008

Norte, G. E., Knaus, K. R., Kuenze, C., Handsfield, G. G., Meyer, C. H., Blemker, S. S., & Hart, J. M. (2018). MRI-Based Assessment of Lower-Extremity Muscle Volumes in Patients Before and After ACL Reconstruction. Journal of Sport Rehabilitation, 27(3), 201–212. https://doi.org/10.1123/jsr.2016-0141

Ohno, M., Fujiya, H., Goto, K., Kurosaka, M., Ogura, Y., Yatabe, K., … Musha, H. (2017). Long Term Changes in Muscles around the Knee Joint after ACL Resection in Rats: Comparisons of ACL-Resected, Contralateral and Normal Limb. Journal of Sports Science & Medicine, 16(3), 429–437.

Okuyama, R., Honda, M., Fujiya, H., Goto, K., Sugiura, T., & Akema, T. (2003). Expression of heat shock protein 72 in rat quadriceps muscles following anterior cruciate ligament resection. Journal of Orthopaedic Science, 8(2), 213–217. https://doi.org/10.1007/s007760300035

Pereira, M. G., Baptista, I. L., Carlassara, E. O. C., Moriscot, A. S., Aoki, M. S., & Miyabara, E. H. (2014). Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats. PLoS ONE, 9(1), 11. https://doi.org/10.1371/journal.pone.0085283

Peter M. Tiidus, A. Russel Tupling, & Michael E. Houston. (2012). Biochemistry Primer for Exercise Science (4th edition). Human Kinetics.

Senf, S. M. (2013). Skeletal muscle heat shock protein 70: Diverse functions and therapeutic potential for wasting disorders. Frontiers in Physiology, 4(330), 6. https://doi.org/10.3389/fphys.2013.00330

Song, Y., Yu, C., Wang, C., Ma, X., Xu, K., Zhong, J. L., … Yang, L. (2016). Mechano growth factor-C24E, a potential promoting biochemical factor for ligament tissue engineering. Biochemical Engineering Journal, 105(2016), 249–263. https://doi.org/10.1016/j.bej.2015.09.023

Wang, S., Wei, X., Zhou, J., Zhang, J., Li, K., Chen, Q., … Wei, L. (2014). Identification of α2-Macroglobulin as a Master Inhibitor of Cartilage-Degrading Factors That Attenuates the Progression of Posttraumatic Osteoarthritis. Arthritis & Rheumatology, 66(7), 1843–1853. https://doi.org/10.1002/art.38576

Wurtzel, C. N., Gumucio, J. P., Grekin, J. A., Khouri, R. K., Russell, A. J., Bedi, A., & Mendias, C. L. (2017). Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. Journal of Orthopaedic Research, 35(11), 2499–2505. https://doi.org/10.1002/jor.23537

Yoh, K., & Infantolino, B. W. (2017). Weekly Changes in Vastus Lateralis Volume Following ACL Injury. International Journal of Athletic Therapy & Training, 22(3), 38–43. https://doi.org/10.1123/ijatt.2015-0077

Zeng, L., Xiao, C. Z., Deng, Z. T., & Li, R. H. (2017). Chondroprotective Effects and Multitarget Mechanisms of Fu Yuan Capsule in a Rat Osteoarthritis Model. Evidence-Based Complementary & Alternative Medicine (ECAM), 2017, 1–11. https://doi.org/10.1155/2017/8985623




DOI: http://dx.doi.org/10.7575/aiac.ijkss.v.8n.1p.8

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2020 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.