The Effects of Including Aerobic Exercise in the Treatment Protocol of Concussions: A Systemic Review and Meta-analysis

Sofie De Wandel, Tracey Sulak, Darryn S. Willoughby

Abstract


Background of Study: More research studies are being completed advocating for the use of exercise as an intervention and form of treatment for concussions. However, exercise can include many forms of physical activity, intensities, and durations. This systemic review and meta-analysis focused on the use of aerobic exercise, such as cycling or walking, as an intervention and form of treatment for children and young adults suffering from a concussion. Objective: The purpose of this systematic review and meta-analysis was to determine if the addition of aerobic exercise to an individual concussion treatment makes a significant difference when compared to treatments using flexibility as a form of physical activity or traditional methods of treatment following guidelines from the 2016 Berlin Consensus Statement on Concussion in Sport. Method: The search conducted for articles generated 472 studies. Out of these, 5 studies were selected based from the inclusion criteria. Results: Aerobic exercise was shown to significantly decrease the absolute risk difference for the development of prolonged post-concussion symptoms in children and adolescents with concussions when compared to those who reported no physical activity. The mean risk difference for the independent variable (IV) was -0.12 with a 95% confidence interval was reported to be -0.17 to -0.07 and an effect size of Z = 4.94 (P < 0.00001). Aerobic exercise was also shown to have an effect on the change in post-concussion symptom scale scores. The mean IV difference was 8.7 with a 95% confidence interval of 2.05 to 14.35 and an effect size of Z=3.02 (p=0.003). Conclusion: In conclusion, while there is evidence that aerobic exercise is beneficial for children and adolescents with a concussion, more studies need to be completed focusing on this age group and the effects of aerobic exercise on concussion recovery.


Keywords


Concussion, Exercise, Adolescents, Children, Return to Sport, Exercise Therapy

Full Text:

PDF

References


Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13–25. https://doi.org/10.1016/j.nbd.2009.07.030

Alves, J. L. (2014). Blood-brain barrier and traumatic brain injury. Journal of Neuroscience Research, 92(2), 141–147. https://doi.org/10.1002/jnr.23300

Amorini, A. M., Lazzarino, G., Di Pietro, V., Signoretti, S., Lazzarino, G., Belli, A., & Tavazzi, B. (2016). Metabolic, enzymatic and gene involvement in cerebral glucose dysmetabolism after traumatic brain injury. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1862(4), 679–687. https://doi.org/10.1016/j.bbadis.2016.01.023

Barkhoudarian, G., Hovda, D. A., & Giza, C. C. (2011). The Molecular Pathophysiology of Concussive Brain Injury. Clinics in Sports Medicine, 30(1), 33–48. https://doi.org/10.1016/j.csm.2010.09.001

Bazarian, J. J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging, 30(2), 171–180. https://doi.org/10.1016/j.mri.2011.10.001

Bell, D. R., Guskiewicz, K. M., Clark, M. A., & Padua, D. A. (2011). Systematic review of the balance error scoring system. Sports Health, 3(3), 287–295. https://doi.org/10.1177/1941738111403122

Buckley, T. A., Oldham, J. R., Caccese, J. B., Powers, K. C., Kalmar, J. M., Cinelli, M. E., … Chou, L.-S. (2017). The Effect of Physical Exercise After a Concussion: A Systematic Review and Meta-analysis. The American Journal of Sports Medicine, 29(1), 036354651770613. https://doi.org/10.1177/0363546517706137

Caron, J. G., Rathwell, S., Delaney, J. S., Johnston, K. M., Bloom, G. A., Caron, J. G., … Johnston, K. M. (2017). Development , implementation and assessment of a concussion education programme for high school student-athletes. Journal of Sports Sciences, 00(00), 1–8. https://doi.org/10.1080/02640414.2017.1280180

Chan, C., Iverson, G. L., Purtzki, J., Wong, K., Kwan, V., Gagnon, I., & Silverberg, N. D. (2018). Safety of Active Rehabilitation for Persistent Symptoms After Pediatric Sport-Related Concussion: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 99(2), 242–249. https://doi.org/10.1016/j.apmr.2017.09.108

Chin, L. M., Keyser, R. E., Dsurney, J., & Chan, L. (2015). Improved cognitive performance following aerobic exercise training in people with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 96(4), 754–759. https://doi.org/10.1016/j.apmr.2014.11.009

Corwin, D. J., Wiebe, D. J., Zonfrillo, M. R., Grady, M. F., Robinson, R. L., Goodman, A. M., & Master, C. L. (2015). Vestibular deficits following youth concussion. Journal of Pediatrics, 166(5), 1221–1225. https://doi.org/10.1016/j.jpeds.2015.01.039

Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. https://doi.org/10.1016/j.tins.2007.06.011

El Sayed, T., Mota, A., Fraternali, F., & Ortiz, M. (2008). Biomechanics of traumatic brain injury. Computer Methods in Applied Mechanics and Engineering, 197(51–52), 4692–4701. https://doi.org/10.1016/j.cma.2008.06.006

Gauvin-Lepage, J., Friedman, D., Grilli, L., Sufrategui, M., De Matteo, C., Iverson, G. L., & Gagnon, I. (2018). Effectiveness of an Exercise-Based Active Rehabilitation Intervention for Youth Who Are Slow to Recover After Concussion. Clinical Journal of Sport Medicine, 00(00), 1. https://doi.org/10.1097/JSM.0000000000000634

Ghajar, J. (2000). Traumatic brain injury. The Lancet, 356, 923–929. https://doi.org/10.1016/S0140-6736(00)02689-1

Giza, C. C., & Hovda, D. A. (2015). The new neurometabloic cascade of concussion. Neurosurgery, 75(0 4), S24–S33. https://doi.org/10.1227/NEU.0000000000000505.

Green, S. M., Haukoos, J. S., & Schriger, D. L. (2017). How to Measure the Glasgow Coma Scale. Annals of Emergency Medicine, 70(2), 158–160. https://doi.org/10.1016/j.annemergmed.2016.12.016

Greve, M. W., & Zink, B. J. (2009). Pathophysiology of traumatic brain injury. Mount Sinai Journal of Medicine, 76(2), 97–104. https://doi.org/10.1002/msj.20104

Griesbach, G. S. (2011). Exercise After Traumatic Brain Injury: Is it a Double-Edged Sword? Pm&R, 3(6), S64–S72. https://doi.org/10.1016/j.pmrj.2011.02.008

Grool, A. M., Aglipay, M., Momoli, F., Meehan, W. P., Freedman, S. B., Yeates, K. O., … Zemek, R. (2016). Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. JAMA - Journal of the American Medical Association, 316(23), 2504–2514. https://doi.org/10.1001/jama.2016.17396

Group, C. is S. (2017). Sport concussion assessment tool - 5th edition. British Journal of Sports Medicine, bjsports-2017-097506SCAT5. https://doi.org/10.1136/bjsports-2017-097506SCAT5

Howell, D. R., Andrew Taylor, J., Tan, C. O., Orr, R., & Meehan, W. P. (2018). The Role of Aerobic Exercise in Reducing Persistent Sport-related Concussion Symptoms. Medicine & Science in Sports & Exercise, (October), 1. https://doi.org/10.1249/MSS.0000000000001829

Howell, D. R., Osternig, L. R., & Chou, L. S. (2015). Return to activity after concussion affects dual-task gait balance control recovery. Medicine and Science in Sports and Exercise, 47(4), 673–680. https://doi.org/10.1249/MSS.0000000000000462

Iverson, G. L., Lovell, M. R., & Collins, M. W. (2004). Interpreting Change on ImPACT Following Sport Concussion. The Clinical Neuropsychologist, 17(4), 460–467. https://doi.org/10.1076/clin.17.4.460.27934

King, D., Brughelli, M., Hume, P., & Gissane, C. (2014). Assessment, management and knowledge of sport-related concussion: Systematic review. Sports Medicine, 44(4), 449–471. https://doi.org/10.1007/s40279-013-0134-x

Kumar, A., & Loane, D. J. (2012). Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain, Behavior, and Immunity, 26(8), 1191–1201. https://doi.org/10.1016/j.bbi.2012.06.008

Kurowski, B. G., Hugentobler, J., Quatman-Yates, C., Taylor, J., Gubanich, P. J., Altaye, M., & Wade, S. L. (2017). Aerobic Exercise for Adolescents With Prolonged Symptoms After Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 32(2), 79–89. https://doi.org/10.1097/HTR.0000000000000238

Lal, A., Kolakowsky-Hayner, S. A., Ghajar, J., & Balamane, M. (2017). The Effect of Physical Exercise After a Concussion: A Systematic Review and Meta-analysis. The American Journal of Sports Medicine, 036354651770613. https://doi.org/10.1177/0363546517706137

Lancaster, M. A., Olson, D. V., McCrea, M. A., Nelson, L. D., LaRoche, A. A., & Muftuler, L. T. (2016). Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Human Brain Mapping, 37(11), 3821–3834. https://doi.org/10.1002/hbm.23278

Leddy, J. J., Haider, M. N., Ellis, M., & Willer, B. S. (2018). Exercise is Medicine for Concussion. Current Sports Medicine Reports. https://doi.org/10.1249/JSR.0000000000000505

Leddy, J. J., & Willer, B. (2013). Use of graded exercise testing in concussion and return-to-activity management. Current Sports Medicine Reports, 12(6), 370–376. https://doi.org/10.1249/JSR.0000000000000008

Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., … Düzel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. NeuroImage. https://doi.org/10.1016/j.neuroimage.2015.10.084

Maerlender, A., Rieman, W., Lichtenstein, J., & Condiracci, C. (2015). Programmed physical exertion in recovery from sports-related concussion: A randomized pilot study. Developmental Neuropsychology, 40(5), 273–278. https://doi.org/10.1080/87565641.2015.1067706

Makdissi, M., Darby, D., Maruff, P., Ugoni, A., Brukner, P., & McCrory, P. R. (2010). Natural History of Concussion in Sport. The American Journal of Sports Medicine, 38(3), 464–471. https://doi.org/10.1177/0363546509349491

Marshall, S. W., Guskiewicz, K. M., Shankar, V., Mccrea, M., & Cantu, R. C. (2015). Epidemiology of sports-related concussion in seven US high school and collegiate sports. Injury Epidemiology. https://doi.org/10.1186/s40621-015-0045-4

Mccrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., … Vos, P. E. (2017). Consensus statement on concussion in sport — the 5 th international conference on concussion in sport held in Berlin , October 2016, 1–10. https://doi.org/10.1136/bjsports-2017-097699

McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., … Turner, M. (2013). Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250–258. https://doi.org/10.1136/bjsports-2013-092313

McCrory, Paul, Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvorák, J., Echemendia, R. J., … Turner, M. (2013). Consensus Statement on Concussion in Sport-The 4th International Conference on Concussion in Sport Held in Zurich, November 2012. PM and R, 5(4), 255–279. https://doi.org/10.1016/j.pmrj.2013.02.012

McKee, A. C., Daneshvar, D. H., Alvarez, V. E., & Stein, T. D. (2014). The neuropathology of sport. Acta Neuropathologica, 127(1), 29–51. https://doi.org/10.1007/s00401-013-1230-6

McLeod, T. C. V., & Gioia, G. a. (2010). Cognitive Rest: The Often Neglected Aspect of Concussion Management. Human Kinetics - Athletic Therapy Today, 15(2), 3. https://doi.org/10.1123/att.15.2.1

Micay, R., Richards, D., & Hutchison, M. G. (2018). Feasibility of a postacute structured aerobic exercise intervention following sport concussion in symptomatic adolescents: A randomised controlled study. BMJ Open Sport and Exercise Medicine, 4(1), 4–9. https://doi.org/10.1136/bmjsem-2018-000404

Mychasiuk, R., Hehar, H., Ma, I., Candy, S., & Esser, M. J. (2016). Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. European Journal of Neuroscience, 44(7), 2407–2417. https://doi.org/10.1111/ejn.13360

Pearn, M. L., Niesman, I. R., Egawa, J., Sawada, A., Almenar-Queralt, A., Shah, S. B., … Head, B. P. (2017). Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cellular and Molecular Neurobiology, 37(4), 571–585. https://doi.org/10.1007/s10571-016-0400-1

Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., … Minoshima, S. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. NeuroImage, 54(SUPPL. 1), S76–S82. https://doi.org/10.1016/j.neuroimage.2010.04.008

Portugal, E. M. M., Cevada, T., Sobral Monteiro-Junior, R., Teixeira Guimarães, T., Da Cruz Rubini, E., Lattari, E., … Camaz Deslandes, A. (2013). Neuroscience of exercise: From neurobiology mechanisms to mental health. Neuropsychobiology, 68(1), 1–14. https://doi.org/10.1159/000350946

Quatman-Yates, C., Bailes, A., Constand, S., Sroka, M. C., Nissen, K., Kurowski, B., & Hugentobler, J. (2017). Exertional Tolerance Assessments after Mild Traumatic Brain Injury: A Systematic Review. Archives of Physical Medicine and Rehabilitation. https://doi.org/10.1016/j.apmr.2017.11.012

Schatz, P., Pardini, J. E., Lovell, M. R., Collins, M. W., & Podell, K. (2006). Sensitivity and specificity of the ImPACT Test Battery for concussion in athletes. Archives of Clinical Neuropsychology, 21(1), 91–99. https://doi.org/10.1016/j.acn.2005.08.001

Schneider, K. J., Leddy, J. J., Guskiewicz, K. M., Seifert, T., McCrea, M., Silverberg, N. D., … Makdissi, M. (2017). Rest and treatment/rehabilitation following sport-related concussion: a systematic review. British Journal of Sports Medicine, 51(12), 930–934. https://doi.org/10.1136/bjsports-2016-097475

Seifert, T., & Shipman, V. (2015). The Pathophysiology of Sports Concussion. Current Pain and Headache Reports, 19(8), 1–9. https://doi.org/10.1007/s11916-015-0513-0

Serlin, Y., Shelef, I., Knyazer, B., & Friedman, A. (2015). Anatomy and physiology of the blood-brain barrier. Seminars in Cell and Developmental Biology, 38, 2–6. https://doi.org/10.1016/j.semcdb.2015.01.002

Signoretti, S., Lazzarino, G., Tavazzi, B., & Vagnozzi, R. (2011). The pathophysiology of concussion. PM & R : The Journal of Injury, Function, and Rehabilitation, 3(10 Suppl 2), S359–S368. https://doi.org/10.1016/j.pmrj.2011.07.018

Smith, D. H., Meaney, D. F., & Shull, W. H. (2003). Diffuse axonal injury in head trauma. J Head Trauma Rehabil, 18, 307–316. https://doi.org/00001199-200307000-00003

Strain, J., Didehbani, N., Cullum, C. M., Mansinghani, S., Conover, H., Kraut, M. A., … Womack, K. B. (2013). Depressive symptoms and white matter dysfunction in retired NFL players with concussion history. Neurology, 81(1), 25–32. https://doi.org/10.1212/WNL.0b013e318299ccf8

Sufrinko, A. M., Mucha, A., Covassin, T., Marchetti, G., Elbin, R. J., Collins, M. W., & Kontos, A. P. (2016). Sex Differences in Vestibular/Ocular and Neurocognitive Outcomes After Sport-Related Concussion. Clinical Journal of Sport Medicine : Official Journal of the Canadian Academy of Sport Medicine, 0(0), 1–6. https://doi.org/10.1097/JSM.0000000000000324

Swenson, D. M., Collins, C. L., Best, T. M., Flanigan, D. C., Fields, S. K., & Comstock, R. D. (2013). Epidemiology of knee injuries among U.S. high school athletes, 2005/2006-2010/2011. Medicine and Science in Sports and Exercise, 45(3), 462–469. https://doi.org/10.1249/MSS.0b013e318277acca

Valovich McLeod, T. C., & Hale, T. D. (2015). Vestibular and balance issues following sport-related concussion. Brain Injury, 29(2), 175–184. https://doi.org/10.3109/02699052.2014.965206

Veliz, P., McCabe, S. E., Eckner, J. T., & Schulenberg, J. E. (2017). Prevalence of concussion among US adolescents and correlated factors. JAMA - Journal of the American Medical Association, 318(12), 1180–1182. https://doi.org/10.1001/jama.2017.9087

Wei, Y. C., Wang, S. R., & Xu, X. H. (2017). Sex differences in brain-derived neurotrophic factor signaling: Functions and implications. Journal of Neuroscience Research, 95(1–2), 336–344. https://doi.org/10.1002/jnr.23897

Werner, C., & Engelhard, K. (2007). Pathophysiology of traumatic brain injury. British Journal of Anaesthesia, 99(1), 4–9. https://doi.org/10.1093/bja/aem131

West, T. A., & Marion, D. W. (2014). Current Recommendations for the Diagnosis and Treatment of Concussion in Sport: A Comparison of Three New Guidelines. Journal of Neurotrauma, 31(2), 159–168. https://doi.org/10.1089/neu.2013.3031

Wise, E. K., Hoffman, J. M., Powell, J. M., Bombardier, C. H., & Bell, K. R. (2012). Benefits of exercise maintenance after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 93(8), 1319–1323. https://doi.org/10.1016/j.apmr.2012.05.009

Zhao, Z., Zhou, Y., Tian, Y., Li, M., Dong, J. fei, & Zhang, J. (2017). Cellular microparticles and pathophysiology of traumatic brain injury. Protein and Cell, 8(11), 801–810. https://doi.org/10.1007/s13238-017-0414-6




DOI: http://dx.doi.org/10.7575/aiac.ijkss.v.7n.4p.33

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2019 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.