Effects of Drop Height on Drop Jump Performance

Cameron D. Addie, Jocelyn E. Arnett, Tyler J. Neltner, Marisa K. Straughn, Eric K. Greska, Ludmila Cosio-Lima, Lee E. Brown

Abstract


Background: Drop jumps (DJ) are commonly implemented in plyometric training programs in an attempt to enhance jump performance. However, it is unknown how different drop heights (DH) affect reactive strength index (RSI), jump height (JH) and ground contact time (GCT). Objectives: The purpose of this study was to assess the effect of various DHs on RSI, JH, and GCT. Methods: Twenty volunteers with a history of plyometric training (Males = 13, Females = 7; age: 22.80 ± 2.69 yr, height: 175.65 ± 11.81 cm, mass: 78.32 ± 13.50 kg) performed DJs from 30 cm (DJ30), 45 cm (DJ45), 60 cm (DJ60), 76 cm (DJ76), and 91 cm (DJ91) and a countermovement jump (0 cm). A 16-camera Vicon system was used to track reflective markers to calculate JH; a Kistler force plate was used to record GCT. RSI was calculated by dividing JH by GCT. RSI and GCT were compared using a 2x5 (sex x DH) mixed factor repeated measures ANOVA, while JH was compared using a 2x6 (sex x DH) repeated measures ANOVA. Results: There were no interactions, but there was a main effect for sex for both JH (M>F) and GCT (F>M). JH demonstrated no main effect for DH: DJ30 (0.49 ± 0.11 m), DJ45 (0.50 ± 0.11 m), DJ60 (0.49 ± 0.12 m), DJ76 (0.50 ± 0.11 m), and DJ91 (0.48 ± 0.12 m). However, GCT showed a main effect where DJ30 (0.36 ± 0.10 s), DJ45 (0.36 ± 0.12 s), and DJ60 (0.37 ± 0.10 s) were not significantly different but were less than DJ76 (0.40 ± 0.12 s) and DJ91 (0.42 ± 0.12 s). Conclusions: Increasing DH beyond 60 cm increased GCT but did not affect JH, resulting in decreased RSI. Therefore, practitioners designing plyometric training programs that implement DJs may utilize DHs up to 60 cm, thereby minimizing GCT without compromising JH.


Keywords


Plyometric Exercise, Athletes, Demography, Reflex

Full Text:

PDF

References


Archer, D. C., Brown, L. E., Coburn, J. W., Galpin, A. J., Drouet, P. C., Leyva, W. D., ... & Wong, M. A. (2016). Effects of short-term jump squat training with and without chains on strength and power in recreational lifters. International Journal of Kinesiology and Sports Science, 4(4), 18-24. DOI: 10.7575/aiac.ijkss.v.4n.4p.18

Ball, N. B., Stock, C. G., & Scurr, J. C. (2010). Bilateral contact ground reaction forces and contact times during plyometric drop jumping. The Journal of Strength & Conditioning Research, 24(10), 2762-2769. DOI: 10.1519/JSC.0b013e3181cc2408

Barr, M. J., & Nolte, V. W. (2014). The importance of maximal leg strength for female athletes when performing drop jumps. The Journal of Strength & Conditioning Research, 28(2), 373-380. DOI: 10.1519/JSC.0b013e31829999af

Beattie, K., Carson, B. P., Lyons, M., & Kenny, I. C. (2017). The relationship between maximal strength and reactive strength. International Journal of Sports Physiology and Performance, 12(4), 548-553. DOI: https://doi.org/10.1123/ijspp.2016-0216

Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1987). Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Medical Science of Sports and Exercise, 19(4), 332-338. DOI: 10.1249/00005768-198708000-00004

Byrne, P. J., Moran, K., Rankin, P., & Kinsella, S. (2010). A comparison of methods used to identify ‘optimal’ drop height for early phase adaptations in depth jump training. The Journal of Strength & Conditioning Research, 24(8), 2050-2055. DOI: 10.1519/JSC.0b013e3181d8eb03

Deliceoğlu, G., Ünlü, G., Coşkun, B., Tortu, E., Kocahan, T., & Koçak, S. (2017). The effect of ground contact time and drop height on work and power outputs for drop jump in youth turkish national volleyball players. Journal of Physical Education & Sports Science/Beden Egitimi ve Spor Bilimleri Dergisi, 11(3), 253-258. DOI: 10.11114/jets.v7i3S.4005

Earp, J. E., Kraemer, W. J., Newton, R. U., Comstock, B. A., Fragala, M. S., Dunn-Lewis, C., ... & Denegar, C. R. (2010). Lower-body muscle structure and its role in jump performance during squat, countermovement, and depth drop jumps. The Journal of Strength & Conditioning Research, 24(3), 722-729. DOI: 10.1519/JSC.0b013e3181d32c04

Ebben, W. P., & Petushek, E. J. (2010). Using the reactive strength index modified to evaluate plyometric performance. The Journal of Strength & Conditioning Research, 24(8), 1983-1987. DOI: 10.1519/JSC.0b013e3181e72466

Flanagan, E. P., & Comyns, T. M. (2008). The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength & Conditioning Journal, 30(5), 32-38. DOI: 10.1519/SSC.0b013e318187e25b

Flanagan, E. P., Ebben, W. P., & Jensen, R. L. (2008). Reliability of the reactive strength index and time to stabilization during depth jumps. The Journal of Strength & Conditioning Research, 22(5), 1677-1682. DOI: 10.1519/JSC.0b013e318182034b

Gehri, D. J., Ricard, M. D., Kleiner, D. M., & Kirkendall, D. T. (1998). A comparison of plyometric training techniques for improving vertical jump ability and energy production. Journal of Strength and Conditioning Research, 12(2), 85-89. DOI:10.1519/00124278-199805000-00005

Hoffren, M. A., Ishikawa, M., & Komi, P. V. (2007). Age-related neuromuscular function during drop jumps. Journal of Applied Physiology, 103, 1276-1283. DOI: 10.1152/japplphysiol.00430.2007

Kipp, K., Kiely, M. T., Giordanelli, M. D., Malloy, P. J., & Geiser, C. F. (2018). Biomechanical determinants of the reactive strength index during drop jumps. International Journal of Sports Physiology and Performance, 13(1), 44-49. DOI: 10.1123/ijspp.2017-0021

Laffaye, G., & Choukou, M. A. (2010). Gender bias in the effect of dropping height on jumping performance in volleyball players. The Journal of Strength & Conditioning Research, 24(8), 2143-2148. DOI: 10.1519/JSC.0b013e3181aeb140

Makaruk, H., & Sacewicz, T. (2011). The effect of drop height and body mass on drop jump intensity. Biology of Sport, 28(1), 63-67. DOI: 10.5604/935873

Markwick, W. J., Bird, S. P., Tufano, J. J., Seitz, L. B., & Haff, G. G. (2015). The intraday reliability of the reactive strength index calculated from a drop jump in professional men’s basketball. International Journal of Sports Physiology and Performance, 10(4), 482-488. DOI: https://doi.org/10.1123/ijspp.2014-0265

Matavulj, D., Kukolj, M., Ugarkovic, D., Tihanyi, J., & Jaric, S. (2001). Effects of pylometric training on jumping performance in junior basketball players. Journal of Sports Medicine and Physical Fitness, 41(2), 159-164. DOI: 10.1007/s11332-013-0159-4

Mirzaei, B., Norasteh, A. A., de Villarreal, E. S., & Asadi, A. (2014). Effects of six weeks of depth jump vs. countermovement jump training on sand on muscle soreness and performance. Kinesiology, 46(1), 97-108. UDC: 796.015.31:796.418:796.422:612.7

Ramirez-Campillo, R., Alvarez, C., García-Pinillos, F., Sanchez-Sanchez, J., Yanci, J., Castillo, D., ... & Izquierdo, M. (2018). Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players?. The Journal of Strength & Conditioning Research, 32(4), 885-893. DOI: 10.1519/JSC.0000000000002467

Read, M. M., & Cisar, C. (2001). The influence of varied rest interval lengths on depth jump performance. Journal of Strength and Conditioning Research, 15(3), 279-283. DOI: 10.1519/1533-4287(2001)015<0279:TIOVRI>2.0.CO;2

Peng, H. T. (2011). Changes in biomechanical properties during drop jumps of incremental height. The Journal of Strength & Conditioning Research, 25(9), 2510-2518. DOI: 10.1519/JSC.0b013e318201bcb3

Stieg, J. L., Faulkinbury, K. J., Tran, T. T., Brown, L. E., Coburn, J. W., & Judelson, D. A. (2011). Acute effects of depth jump volume on vertical jump performance in collegiate women soccer players. Kinesiology, 43(1), 25-30 UDC 796.012.63:796.332-055.2

Struzik, A., Juras, G., Pietraszewski, B., & Rokita, A. (2016). Effect of drop jump technique on the reactive strength index. Journal of Human Kinetics, 52(1), 157-164. DOI: 10.1515/hukin-2016-0003

Suchomel, T. J., Bailey, C. A., Sole, C. J., Grazer, J. L., & Beckham, G. K. (2015). Using reactive strength index-modified as an explosive performance measurement tool in Division I athletes. The Journal of Strength & Conditioning Research, 29(4), 899-904. DOI: 10.1519/JSC.0000000000000743.

Taube, W., Leukel, C., Lauber, B., & Gollhofer, A. (2012). The drop height determines neuromuscular adaptations and changes in jump performance in stretch‐shortening cycle training. Scandinavian Journal of Medicine & Science in Sports, 22(5), 671-683. DOI: 10.1111/j.1600-0838.2011.01293.x

Walsh, M., Arampatzis, A., Schade, F., & Brüggemann, G. P. (2004). The effect of drop jump starting height and contact time on power, work performed, and moment of force. The Journal of Strength & Conditioning Research, 18(3), 561-566. DOI: 10.1519/1533-4287(2004)18<561:TEODJS>2.0.CO;2

Young, W. B., Pryor, J. F., & Wilson, G. J. (1995). Countermovement and drop jump performance. Journal of Strength and Conditioning Research, 9(4), 232-236. DOI: 10.1515/hukin-2016-0003




DOI: http://dx.doi.org/10.7575/aiac.ijkss.v.7n.4p.28

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2019 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.