Factors Associated with Prolonged Length of Stay in Intensive Care Unit: Systematic Review and Meta-analysis

Nashwa M. Radwan1*, MSc, MD, Nagla E. Mahmoud2, MD, FFPH, Amal H. Alfaifi3, SBFM, ABFM, Khaled I. Alabdulkareem4, SBFM, ABFM

1Professor of Public Health and Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt. Public Health consultant in Assisting Deanship for Primary Health Care, Ministry of Health, Kingdom of Saudi Arabia
2Community Medicine specialist in Assisting Deanship for Primary Health Care, Ministry of Health, Kingdom of Saudi Arabia
3Family Medicine specialist in Assisting Deanship for Primary Health Care, Ministry of Health, Kingdom of Saudi Arabia
4Assistant professor of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Kingdom of Saudi Arabia. Assistant Deputy Minister for Primary Health Care, Ministry of Health, Kingdom of Saudi Arabia

Corresponding Author: Nashwa M. Radwan, E-mail: Radwan.n.m@gmail.com

ARTICLE INFO

Article history
Received: December 08, 2020
Accepted: December 05, 2020
Published: January 31, 2021
Volume: 9 Issue: 1

Conflicts of interest: All authors declare that no conflicts of interest with publication of the manuscript.
Funding: This research did not receive any specific grant from funding agencies.

Key words:
Prolonged Length of Stay, Risk Factors, Extended Length of Stay, Patients, Intensive Care Unit

ABSTRACT

Background: Prolonged length of stay (PLOS) increases the risk of hospital-acquired infections and disrupts patient flow and access to care due to bed shortages. The extent to which PLOS is attributable to complications, patient characteristics, illness, or inefficient practice style is unclear. Objectives: To determine risk factors associated with prolonged length of stay (PLOS) in intensive care unit (ICU). Search methods: We searched the COCHRANE, MEDLINE, TRIP and EMBASE from 2010 till now. Selection criteria: We included all the studies published in English language from 2010 till now and investigated the PLOS in ICU after any medical condition. Data collection and analysis: Two authors independently assessed trials eligibility and risk of bias and extracted data. Review Manager 5.3 was utilized to manage the data. Main results: The review included 84719 participants from fourteen observational studies that had some degree of risk of bias and substantial heterogeneity. Post-operative sepsis/septic shock and the severity of illness of the patients at hospital admission were the most common risk factors for PLOS (OR= 5.65, CI= 1.98, 16.08 and OR=3.95, CI= 1.67, 9.34 respectively), followed by emergency operation (OR= 2.68, CI= 1.56, 4.62), and comorbidities including renal failure and coronary heart disease (OR= 2.6, CI=1.26, 5.51 and OR=2.57, CI= 1.61, 4.10 respectively). Other variables associated with PLOS were respectively; pre-operative condition (OR=2.36, CI=1.28, 4.34), long term use of corticosteroids (OR= 2.03, CI= 1.81, 2.29), age >70 years (OR=1.89, CI=0.54, 2.32), operation duration >180 minutes (OR=1.86, CI=1.46, 2.38), most deprived condition (OR= 1.82, CI=1.15, 2.89), diabetes (OR=1.36, CI=1.18, 1.56), hypertension (OR=1.32, CI= 1.09, 1.62), smoking (OR=1.25, CI= 1.13, 1.39) and male sex (OR= 1.11, CI=1.06, 1.17). Authors conclusion: Identification of risk factors associated with PLOS provides the opportunity for intervention to reduce the LOS and support efficient/optimal use of hospital resources.

BACKGROUND

One of the important factors that influence health management is the length of stay (LOS) in the intensive care unit (ICU) (1). It attracts the attention of healthcare systems as one of the major determinants of hospital cost and as an indicator of quality of care (2). PLOS not only delays patient discharge with higher costs due to increased use of medical resources, but it also predicts greater risk for readmission (3,4).

The definition of a prolonged ICU stay varies by hospital type, ICU type, and different diseases (5-9). Previous studies have shown factors associated with PLOS in ICU including; patient socio-demographic characteristics, higher comorbidity burden, provider characteristics, operative, intraoperative, postoperative variables, (10-15) and hospital administrative system factors e.g. delays in investigation and procedures [36] as well as the day and time of admission (16, 17) and low hospital workload (18).

A better understanding of the extent to which PLOS is attributable to patient illness, complications, or practice style difference is essential to develop interventions to reduce resource consumption and enhance quality of care. In this context, this systematic review and meta-analysis aimed...
to investigate factors associated with PLOS in ICU among patients with different medical conditions

Objective

This review aimed to assess the risk factors associated with PLOS in ICU after any medical condition.

METHODS

Criteria for Considering Studies for this Review

We included all available studies that investigated factors associated with PLOS in ICU following any medical condition and published in English language from 2010 till now.

Type of Participants

Patients admitted to ICU following any medical condition.

Exclusion Criteria

Infected patients in the isolation ward, Patients temporarily readmitted to intermediate ICU, individuals with a negative LOS (due to errors in dates recorded) and patients who died during hospital stay.

Outcome Measures

The outcome measures are the different variables associated with PLOS. The literature varies in defining the period at which a stay is considered as prolonged. PLOS is defined as LOS ≥ 90th percentile (19, 20, 21, 22) or ≥ 75th percentile (10, 23, 24, 25) or above the median LOS (14, 26) for the entire cohort of population. The different variables associated with PLOS will include; (1) patients’ demographics (age, sex, smoking), (2) patients’ presenting conditions at admission including comorbidities and severity of illness Severity of illness was measured using the Severity of Illness Rating Scale (SIRS) (27) based on patient symptoms, vital signs and categorised as low, moderate or high. Finally, (3) operative factors including; (a) Preoperative functional status measured by the American Society of Anaesthesiologists (ASA) class codes, which is an exhaustive list of surgical procedures ranked by complexity in ascending order [14, 28], (b) intraoperative factors including; operation type e.g. emergency or elective and operation duration, which is the time interval between incision to closure, (c) postoperative factors e.g. septic shock/ sepsis.

Search Methods for Identification of Studies

We systematically searched the following database; Cochrane Library, EMBASE, TRIP and MEDLINE through using the following terms; Length of stay, OR Prolonged length of stay, OR Extended length of stay, OR Intensive care unit stay, and Risk factors, OR Factors associated, OR Factors predicting, OR Clinical factors. The reference lists of the primary studied were also checked for additional studies.

Data Collection and Analysis

Selection of studies

Two authors independently read the titles and abstracts of potential articles. Relevant articles were obtained and read independently for inclusion criteria.

Data extraction and management

Two authors independently extracted the study characteristics from the included studies. One author transferred the data into the Review Manager (RevMan) 5.3 software (29)

Assessment of risk of bias in included studies

The potential risk of bias for each study was assessed independently by two authors and graded as high, low, or unclear according to the criteria of NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE for CASE CONTROL/ COHORT STUDIES in META-ANALYSIS (30). The scale utilised the following domains:

1- Adequate case definition (selection bias)
2- Consecutive representativeness of cases (selection bias)
3- Selection of community controls (selection bias)
4- Adequate definition of controls (selection bias)
5- Ascertainment of exposure/ independent blind assessment of outcome (selection bias)
6- Comparability of cases and controls on the basis of the design or analysis (comparability bias)
7- Same method of ascertainment for cases and controls/ Adequacy of follow up period (exposure/outcome bias)
8- All subjects complete follow up period/ Same response rate for both groups (exposure/outcome bias)

Assessment of quality of evidence

GRADE approach (Grading of Recommendations, Assessment, Development and Evaluation) (31) was used to assess quality of evidence based on four domains; risk of bias in the included studies, directness of the evidence, consistency across studies, and precision of the pooled estimate of outcome measure. The level of quality is judged on a four-point scale:

1- High quality: further research is very unlikely to change our confidence in the estimate of effect
2- Moderate quality: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate;
3- Low quality: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate
4- Very low quality: the estimate of effect is very uncertain

Measures of treatment effect

Review Manager 5.3 (29) was utilized to manage the data using random effect model. Odds ratio and mean difference were used to present dichotomous and continuous data with 95% confidence interval.
Dealing with heterogeneity

I² statistic was used to measure heterogeneity among the included studies in each analysis (32).

RESULTS

Results of Search

We searched 174 potentially relevant articles, 102 were identified after removal of duplicates. Abstracts were reviewed independently by two authors based on inclusion and exclusion criteria. Twenty-one full-text articles were assessed for eligibility, of these, 14 met the inclusion criteria. Details of the search is given in the Prisma flow diagram (Figure 1).

Included Studies

Details of the study characteristics of the included studies (study design, duration of study, study setting, participants and outcome measures) are provided in Table 1 (supplementary appendix).

Trial Participants

The review included 84719 participants aged above 18 years of whom 19757 had PLOS, and 64962 had normal LOS. They were colorectal cancer surgery patients (Aravani et al., Krell et al., Lobato et al, and Chiu et al.), ovarian cancer surgery patients (Smith et al.), diabetic patients with severe hypoglycaemia (Chua et al), cardiac surgery patients (Almarshrafi, et al, Mahesh et al, Eltheni et al, and Oliveira et al), acute stroke patients (Saxena et al), hepatobiliary and neurosurgery patients (Lee et al), trauma patients (Hwabejire et al) and very old patients >78 years (Toh et al).

Risk of Bias in included Studies

Overall, the studies included in this review were observational studies with some risk of bias. Independent assessment of outcome measures was high risk among two studies (Almarshrafi et al and Chua et al), low risk among three (Lee et al, Saxena et al and and Toh et al) and unclear for the remaining studies. The same response rate for both cases and controls was high risk among two studies (Aravani et al and Toh et al), unclear in two studies (Lobato et al and Mahesh et al) and low in the remaining studies. Adequacy of follow up period was unclear in four studies (Chua et al, Eltheni et al, Lee et al and Mahesh et al) and low risk in the remaining studies. Consecutive cases representativeness was unclear risk among three studies (Lobato et al, Oliveira et al and saxena et al) and low risk in the remaining studies (Figure 2).

Outcome Measures

The association between patients’ demographic characteristics and PLOS is explained in figures 3.1- 3.4 in the supplementary appendix. Age was a statistically significant factor with patients aged >70 years were about two folds of increased risk for PLOS (OR=1.89, CI= 1.54, 2.32), with significant considerable heterogeneity across the trials (I² =81%, P=0.0003). Also, male sex and smoking were sta-
were at about four folds of increased risk for PLOS (OR = 3.95, CI = 1.67, 9.34), while those with low and moderate SIR had no significant increased risk (OR = 0.43, CI = 0.12, 1.56). The presence of diabetes and hypertension increased the risk for PLOS by about 1.5-fold (OR = 1.36, CI = 1.18, 1.56, OR = 1.32, CI = 1.09, 1.62 respectively). The risk increased to about 2.5 folds among patients with Coronary Heart Disease (CHD) and Renal Failure (RF) (OR = 2.57, CI = 1.61, 4.10 and OR = 2.64, CI = 1.26, 5.51 respectively), while the association of Chronic Obstructive Pulmonary Disease (COPD) and high Body Mass Index (BMI) was not a significant factor (OR = 1.24, CI = 0.61, 2.52 and OR = 1.03, CI = 0.81, 1.32 respectively). Significant considerable heterogeneity ranging from 63% to 100%, P < 0.0001 was recorded, indicating inconsistency across the included studies, which could be explained by participants variation in demographic variables and type of medical condition at admission.

Pre-operative, operative, and post-operative variables affecting PLOS were explained in Figures 5.1-5.5 in supplementary appendix. A statistically significant association was recorded between PLOS and patients with grade 3,4 ASA classification, long-term use of corticosteroids, emergency operation, duration of operation >180 minutes and post-operative septic shock/sepsis (OR = 2.36, CI = 1.28, 4.34 , OR = 2.03, CI = 1.81, 2.29 , OR = 2.68, CI = 1.56, 4.62 , OR = 1.86, CI = 1.46, 2.38 , and OR = 5.65, CI = 1.98, 16.08 respectively). Moderate to considerable heterogeneity was recorded across the trials (I^2 = 97%, 31%, 99%, 45% and 98%, P < 0.0001 respectively).

(Figure 5) Explains the forest plot of the pooled estimate of the significant risk factors for PLOS. Patients with post-operative sepsis/septic shock followed by those with high SIR scale represented the highest increased risk for PLOS (OR = 5.65, CI = 1.98, 16.08 and OR = 3.95, CI = 1.67, 9.34 respectively) compared to about 2-2.5 folds of increased risk among patients aged >70 years, CHD, RF, ASA grade 3,4, long term corticosteroids use, emergency operation and operation duration >180 minutes (OR = 1.89, CI = 0.54, 2.32, OR = 2.57, CI = 1.61, 4.10, OR = 2.64, CI = 1.26, 5.51, OR = 2.36, CI = 1.28, 4.34, OR = 2.03, CI = 1.81, 2.29, OR = 2.68, CI = 1.56, 4.62 and OR = 1.86, CI = 1.46, 2.38 respectively).

DISCUSSION

Summary of the Main Results

This review investigated the various factors associated with PLOS in ICU among 84719 participants in fourteen trials. Post-operative sepsis/septic shock followed by the severity of illness of the patients at hospital admission were the most common risk factors for PLOS followed by emergency operation and underlying comorbidities including renal failure and coronary heart disease. Other factors associated with PLOS included; pre-operative physical status (ASA grade 3, 4), long term use of corticosteroids, age >70 years, operation duration >180 minutes, diabetes, hypertension, smoking and male sex.
Table 1. Quality of evidence of risk factors for PLOS

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of participants</th>
<th>OR</th>
<th>CI</th>
<th>Heterogeneity I^2, P</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age > 70 years</td>
<td>43142</td>
<td>1.89</td>
<td>0.54, 2.32</td>
<td>81%, 0.0003</td>
<td>Low</td>
</tr>
<tr>
<td>Male sex</td>
<td>82948</td>
<td>1.11</td>
<td>1.06, 1.17</td>
<td>20%, <0.0001</td>
<td>Moderate</td>
</tr>
<tr>
<td>Smoking</td>
<td>13352</td>
<td>1.25</td>
<td>1.13, 1.39</td>
<td>0%, 0.48</td>
<td>Moderate</td>
</tr>
<tr>
<td>High SIR</td>
<td>72926</td>
<td>3.95</td>
<td>1.67, 9.34</td>
<td>99%, 0.002</td>
<td>Low</td>
</tr>
<tr>
<td>Diabetes</td>
<td>47125</td>
<td>1.36</td>
<td>1.18, 1.56</td>
<td>63%, <0.0001</td>
<td>Low</td>
</tr>
<tr>
<td>Hypertension</td>
<td>24311</td>
<td>1.32</td>
<td>1.09, 1.62</td>
<td>76%, 0.0003</td>
<td>Low</td>
</tr>
<tr>
<td>CHD</td>
<td>45250</td>
<td>2.57</td>
<td>1.61, 4.10</td>
<td>94%, 0.0001</td>
<td>Low</td>
</tr>
<tr>
<td>RF</td>
<td>28263</td>
<td>2.64</td>
<td>1.26, 5.51</td>
<td>93%, <0.0001</td>
<td>Low</td>
</tr>
<tr>
<td>ASA</td>
<td>20956</td>
<td>2.36</td>
<td>1.28, 4.34</td>
<td>97%, <0.0001</td>
<td>Low</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>35107</td>
<td>2.03</td>
<td>1.81, 2.29</td>
<td>31%, 0.23</td>
<td>Moderate</td>
</tr>
<tr>
<td>Emergency Operation</td>
<td>80324</td>
<td>2.68</td>
<td>1.56, 4.62</td>
<td>99%, <0.0001</td>
<td>Low</td>
</tr>
<tr>
<td>Duration of operation</td>
<td>3833</td>
<td>1.86</td>
<td>1.46, 2.38</td>
<td>45%, 0.12</td>
<td>Moderate</td>
</tr>
<tr>
<td>Post-operative sepsis</td>
<td>37037</td>
<td>5.65</td>
<td>1.98, 16.08</td>
<td>98%, 0.00001</td>
<td>Very low</td>
</tr>
</tbody>
</table>

Quality of Evidence

Overall, the studies included in this review were observational studies with considerable risk of bias, which downgraded the quality of evidence by one level for all outcome measures. Directness was not an issue as all included studies investigated the same outcome measure directly. We judged the quality of evidence to be moderate for the pooled estimate of the association between PLOS and male sex, smoking, long-term use of corticosteroids and operation duration >180 minute. We downgraded the evidence by one level only due to the observational designs of the included studies. Imprecision, directness, and heterogeneity were not significant issues ($I^2 = 20\%, 0\%, 31\% and 45\%$ respectively). Regarding the pooled estimate of the association between PLOS and the following outcome; age >70 years, high SIR scale, diabetes, hypertension, CHD, RF, ASA classification 3,4, and emergency operation, we judged the quality of evidence to be low. Imprecision and directness were not significant issues, we downgraded the evidence by two levels due to observational designs of included studies besides considerable heterogeneity recorded in the analysis ($I^2 = 81\%, 99\%, 63\%-76\%, 94\%, 93\%, 97\% and 99\%$ respectively). For the pooled estimate of post-operative septic shock/ sepsis, we judged the quality of evidence to be very low. We downgraded the evidence by one more level because of some degree of imprecision indicated by wide confidence interval (CI= 1.98, 16.08) due to few studies included in the analysis. The considerable heterogeneity demonstrated in some analysis of the outcome measures, could be explained by differences among participants regarding socio-demographic characteristics of the participants and comorbidities except economic condition which was reported in two studies only. The severity of illness was recorded in eight studies. Operative variables including the type and the duration of operation were recorded in seven and five studies respectively and sepsis and ASA classification were investigated in four studies and three studies respectively.

Potential Biases in the Review Process

We systematically searched major databases and the reference lists of the primary studied were also checked. Two authors independently conducted all screening and data extraction. It is unlikely that the methods used in the review could have introduced bias.

Agreements and Disagreements with Other Studies or Reviews

Steady with our results, Almashrafi et al, 2016 (33) conducted a systematic review and investigated factors associated with increased LOS in ICU after cardiac surgery and recorded increased age, atrial fibrillation/ arrhythmia, chronic obstructive pulmonary disease (COPD), renal failure and non-elective surgery status.

Also, Wałędzia et al, 2019 (34), Garza et al, 2018 (35), Kelly et al, 2012 (10), Cocker et al, 2011 (36), Herman et al, 2009 (37) and Ghotkar et al, 2006 (38) identified socio-demographic risk factors for PLOS including; older age (OR= 2.08, CI= 1.32, 3.26, OR=2.83, CI= 2.13-3.76, OR= 1.18, CI=1.02, 1.35, OR = 2.0, CI=1.5, 2.6 and OR= 2.20, CI= 1.40-3.46 respectively), male sex in Wałędzia et al (34) and Garza et al 2018 (35) (OR= 0.63, CI= 0.40, 0.99 and OR= 1.08, CI= 1.05, 1.10 respectively), and smoking in Ghotkar et al (38) (OR= 1.6, CI=1.2, 2.0). This was consistent with our results (OR=1.89, CI=1.54, 2.32 for those aged >70 years and OR= 2.64, CI=1.26, 5.51 for smoking). While Chan et al, 2014 (39) found that gender
Factors Associated with Prolonged Length of Stay in Intensive Care Unit: Systematic Review and Meta-analysis

Figure 3. (3.1-3.4) The association of demographic variables and PLOS

Figure 3.1. Forest plot of patients aged >70 years old and PLOS

Figure 3.2. Forest plot of male sex and PLOS

Figure 3.3. Forest plot of the most deprivation and PLOS among included trials.

Figure 3.4. Forest plot of current smokers and PLOS among included studies

was not a significant factor. In addition, Kelly et al, 2012 (10) stated that deprived economic condition increased the risk for PLOS by about 1.5-fold (OR=1.42, CI=1.16-1.75) which is nearly the same reported by the current review (OR=1.82, CI=1.15, 2.89).

Concerning underlying comorbidities among ICU patients, Kelly et al, 2012 (10) and Chan et al, 2014 (39) stated that comorbidities were significant risk factors for PLOS (OR=2.46, CI=1.83-3.31 and OR=1.71, CI=1.36-2.16 respectively). Walędziak et al 2019 (34), Cocker et al, 2011 (36), Herman et al, 2009 (37) and Ghotkar et al, 2006 (38) identified these comorbidities as CHD in Herman et al, 2009 (37)(OR=1.37, CI=1.01, 1.85) and RF in Cocker et al, 2011 (36), Herman et al, 2009 (37) and Ghotkar et al, 2006 (38) (OR=1.24, CI=1.10, 1.40, OR=2.40, CI=1.63-3.54, OR=7.1, CI=4.8, 10.5 respectively), diabetes in Walędziak et al, 2019 (34), Ghotkar et, 2006 (38) and Chan et al, 2014 (39) (OR=3.24, CI=1.46, 7.20 and OR=1.9, CI=1.5,
Figure 4.1. Forest plot of high severity of illness rating scale and PLOS

Figure 4.2. Forest plot of low and moderate severity of illness rating scale and PLOS

Figure 4.3. Forest plot of diabetes and PLOS

Figure 4.4. Forest plot of hypertension and PLOS

Figure 4.5. Forest plot of CHD and PLOS
Factors Associated with Prolonged Length of Stay in Intensive Care Unit: Systematic Review and Meta-analysis

2.3 and OR= 4.918, CI= 3.764, 6.426 respectively), and hypertension in Ghotkar et al, 2006 (38) (OR= 1.5, CI=1.2, 1.8). This was consistent with our study for CHD, RF, diabetes and hypertension (OR=2.57, CI=1.67, 3.94, OR= 2.64, CI=1.26, 5.15, OR= 1.36, CI=1.09, 1.62 respectively). While Our study recorded no significant association between obesity and PLOS (OR= 1.03, CI= 0.81, 1.32) which was inconsistent with Ghotkar et al, 2006 (38) (OR= 1.9, CI=1.3, 2.7) and could be explained by variation in method of identification and measurement of obesity between the different studies.

In the present study, it was found that patients with high severity of illness at hospital admission are at about four folds of increased risk for PLOS (OR= 3.95, CI=1.67, 9.34) and those with ASA classification 3, 4 at about 2.5 folds (OR= 2.36, CI= 1.28, 4.34) which was nearly the same reported by Choi et al, 2017 (40) (OR= 3.957, CI=1.324, 10.483). Also, Cocker et al, 2011 (36) stated that ICU
patients with unstable severe symptoms are at a significant risk for PLOS (OR= 1.142, CI= 1.025, 1.272). The current review recorded operative risk factors for PLOS as emergent operation (OR= 2.68, CI=1.56, 4.62) and operation duration >180 minutes (OR= 1.86, CI=1.46, 2.38) and post-operative septic shock/ sepsis (OR= 5.65, CI= 1.98, 16.08) which was consistent with Cocker et al, 2011 (36), Ghotkar et al, 2006 (38) and Herman et al, 2009 (37) and Garza et al, 2018 (35) who indicated increased risk for non-electing operation (OR= 1.22, CI= 1.03, 1.51, OR= 3.4, CI= 2.1, 5.2, OR= 5.39, CI= 3.46, 8.38 and OR= 1.80, CI= 1.73, 1.87 respectively). Similarly, Walędziak et al 2019 (34) found that increased operation time was a significant risk for PLOS (OR = 1.01, CI = 1.01–1.02) and Stein et al, 2016 (41) found that post-operative complications increased the risk for PLOS by about three folds (OR= 2.701, CI= 2.077, 3.512) and discharge to post-acute care facility increased the risk by about 3.5 folds (OR= 3.47, CI=2.47, 4.87).

CONCLUSION

Our review highlighted several factors that can aid in predicting the PLOS in ICU. Interventions which address these factors could reduce LOS, improve outcome of these patients, optimise resource allocation and reduce hospital costs.

REFERENCES

3. Damle RN, Cherng NB, Flahive JM., et al. Clinical and

17. Earnest A, Chen MIC, Seow E. Exploring if day and time of admission is associated with average length of stay among inpatients from a tertiary hospital in Singapore: an analytic study based on routine admission data. BMC Health Serv Res. 2006; 6:6.

26. Horn SD, Horn RA. Reliability and validity of the Severity of Illness Index. Med Care 1986; 24:159-78.

Table 1. Characteristics of included studies

<table>
<thead>
<tr>
<th>Author</th>
<th>ID</th>
<th>Design</th>
<th>Setting</th>
<th>Aim</th>
<th>Participants</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aravani et al., 2016</td>
<td></td>
<td>A retrospective observational study of length of stay in hospital after colorectal cancer surgery in England (1998–2010)</td>
<td>National Health Service (NHS) hospitals in England</td>
<td>To identify factors that significantly influence both optimal and prolonged LOS after colorectal cancer surgery</td>
<td>35129 individuals who underwent major resection for colorectal cancer between 1998-2010</td>
<td>Ideal LOS: 4.9% in 1998 to 34.2% in 2010, prolonged LOS: 11.2% to 8.4%, respectively.</td>
</tr>
<tr>
<td>Smith et al 2014</td>
<td></td>
<td>Clinical Factors Associated with Longer Hospital Stay Following Ovarian Cancer Surgery</td>
<td>The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database</td>
<td>to identify factors contributing to prolonged LOS for women undergoing surgery for ovarian cancer</td>
<td>women from 2012–2016 who underwent hysterectomy for ovarian, fallopian tube and peritoneal cancer.</td>
<td>factors associated with PLOS included: (ASA Classification III or IV, presence of ascites, older age</td>
</tr>
<tr>
<td>Krell et al 2014</td>
<td></td>
<td>Extended Length of Stay After Surgery Complications, Inefficient Practice, or Sick Patients?</td>
<td>2009 American College of Surgeons National Surgical Quality Improvement Program.</td>
<td>To examine the influence of complications on the variance in hospitals’ extended LOS rates after colorectal resections.</td>
<td>22,664 adults (10619 males and 12045 females) undergoing colorectal resections in 199 hospitals.</td>
<td>wide variation in risk-adjusted extended LOS (14.5%-35.3%) and risk-adjusted inpatient complication (12.1%-28.5%) rates</td>
</tr>
<tr>
<td>Toh et al., 2017</td>
<td></td>
<td>Factors associated with prolonged length of stay in older patients</td>
<td>Department of Geriatric Medicine at Khoo Teck Puat Hospital, Singapore from January 1 through December 31, 2009,</td>
<td>to investigate the factors associated with prolonged LOS among older patients (aged ≥ 78 years) in a tertiary hospital</td>
<td>72 PLOS patients and 281 non-PLOS patients</td>
<td>Caregiver stress and nursing home placement are potential modifiable risk factors of PLOS</td>
</tr>
<tr>
<td>Chua et al 2019</td>
<td></td>
<td>Factors associated with prolonged length of stay in patients admitted with severe hypoglycaemia to a tertiary care hospital</td>
<td>Singapore General Hospital (SGH) from January 2014 and January 2015</td>
<td>To elucidate factors associated with PLOS among patients with severe hypoglycaemia.</td>
<td>304 diabetic patients with mean age of 70.6 ± 11.3 years</td>
<td>Patients with PLOS had significantly higher Charlson Comorbidity index (CCI) (4.9 ± 2.1 vs 4.1 ± 2.1, P < 0.01)</td>
</tr>
<tr>
<td>Almarshafi, et al., 2016</td>
<td></td>
<td>Factors associated with prolonged length of stay following cardiac surgery</td>
<td>Retrospective observational study</td>
<td>A major referral hospital in Oman between 2009 and 2013.</td>
<td>All adult patients underwent cardiac surgery at a major referral hospital in Oman</td>
<td>30.5% of the patients had PLOS (≥11 days) after surgery, while 17% experienced prolonged ICU LOS (≥5 days</td>
</tr>
<tr>
<td>Saxena et al, 2016</td>
<td></td>
<td>Factors Predicting Length of Hospital Stay in Acute Stroke Patients Admitted in a Rural Tertiary Care Hospital</td>
<td>Mahatma Gandhi Institute of Medical Sciences, Sevagram in central India. between April 1, 2014 and July 31, 2014</td>
<td>to determine factors that extend the LOS in hospital of acute stroke patients.</td>
<td>55 stroke patients 32 males and 23 females.</td>
<td>PLOS in stroke patients was related to location of lesions and low Glasgow coma scale scores</td>
</tr>
<tr>
<td>Author</td>
<td>ID</td>
<td>Design</td>
<td>Setting</td>
<td>Aim</td>
<td>Participants</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>8- Mahesh et al, 2012</td>
<td>12-</td>
<td>Prolonged Stay in Intensive Care Unit Is a Powerful Predictor of Adverse Outcomes After Cardiac Operations</td>
<td>Papworth Hospital, Cambridgeshire, United Kingdom; From January 2003 to December 2007,</td>
<td>to examine the impact of prolonged intensive care unit (ICU) stay on in-hospital mortality and long-term survival.</td>
<td>6101 consecutive patients underwent cardiac operations and 1,139 patients had a PLOS</td>
<td>18.7% patients had PLOS had a higher ICU mortality (10%) compared with controls</td>
</tr>
<tr>
<td>9- Lobato et al, 2013</td>
<td>9-</td>
<td>Risk factors for prolonged length of stay after colorectal surgery</td>
<td>2007 American-College-of-Surgeons-National-Surgical-Quality-Improvement-Program (ACS-NSQIP) database</td>
<td>to identify factors associated with PLOS after colorectal surgery.</td>
<td>2,617 (21.3%) patients underwent colorectal operations with PLOS</td>
<td>Risk factors for prolonged LOS were male gender, congestive heart failure, weight loss, Crohn’s disease,</td>
</tr>
<tr>
<td>10- Eltheni et al, 2012</td>
<td>10-</td>
<td>Predictors of Prolonged Stay in the Intensive Care Unit following Cardiac Surgery</td>
<td>An observational cohort study</td>
<td>to identify preoperative and intraoperative predictors for PLOS</td>
<td>150 consecutive patients, for cardiac surgery ICU</td>
<td>AF and renal dysfunction, and hyperglycaemia are significant risk factors for PLOS</td>
</tr>
<tr>
<td>11- Lee et al, 2018</td>
<td>11-</td>
<td>Factors associated with prolonged length of stay for elective hepatobiliary and neurosurgery patients: a retrospective medical record review study</td>
<td>A retrospective cross-sectional medical record review study</td>
<td>to explore perioperative factors associated with PLOS for elective HPB and NS patients to improve safety and quality of practice.</td>
<td>All elective HPB (150) and NS (166) patients over 18 years old</td>
<td>Preoperative factors had the greatest association with PLOS for HPB and NS elective surgeries</td>
</tr>
<tr>
<td>12- Chiu et al, 2017</td>
<td>12-</td>
<td>The impact of complications on prolonged length of hospital stay after resection in colorectal cancer: A retrospective study of Taiwanese patients</td>
<td>A retrospective study</td>
<td>To assess the impact of minor, major and individual complications on prolonged length of hospital stay in patients with colorectal cancer (CRC) after surgery</td>
<td>1658 patients who underwent surgery for stage I–III CRC</td>
<td>Minor and major complications were significantly associated with PLOS</td>
</tr>
<tr>
<td>13- Hwabejire et al, 2013</td>
<td>13-</td>
<td>Excessively Long Hospital Stays After Trauma Are Not Related to the Severity of Illness Let’s Aim to the Right Target!</td>
<td>Massachusetts General Hospital Level I academic trauma centre. From January 1, 2006, and December 31, 2010.</td>
<td>To identify the causes of excessively prolonged hospitalization (ExProH) in trauma patients.</td>
<td>3237 adult trauma patients</td>
<td>Of 3237 patients, 155 (5%) had Extended PLOS, were older, likely to have blunt trauma, more likely to be self-payers</td>
</tr>
<tr>
<td>14- Oliveira et al, 2013</td>
<td>14-</td>
<td>Risk factors for prolonged hospital stay after isolated coronary artery bypass grafting</td>
<td>In 2007 at the Instituto de Cardiologia do Distrito Federal hospital (IC-DF)</td>
<td>To evaluate individual and perioperative risk factors of prolonged hospitalization in intensive care units and wards.</td>
<td>104 patients who underwent isolated CABG with median age (extremes) 60 (37-82)</td>
<td>Hospital stay >3 days in the intensive care unit occurred for 22.1% of patients and >7 days in the ward for 27.9%.</td>
</tr>
</tbody>
</table>

Table 1. (Continued)
REFERENCES

5. Chua JM, Lim W, Bee YM, Goh SY, Tick CEC, Xia HAT and et al. Factors associated with prolonged length of stay in patients admitted with severe hypoglycaemia to a tertiary care hospital. Endocrinol Diab Metab. 2019:2:e00062. [https://doi.org/10.1002/edm.2]

