Effects of Commercial Isotonic Sports Drinks during Intermittent Exertion

Sebastian Zart, Michael Fröhlich

Abstract


Background: Carbohydrate-electrolyte drinks support performance and recovery during athletic activities. The impact of these isotonic drinks is usually verified by means of placebos without energy. Objective: We checked the extent to which commercial sports drinks may be superior to a syrup–water mixture, similar in calorific value, during an intermittent exertion. Method: In a cross-sectional study, three homogeneously parallelized groups, including a total of 35 test subjects, performed full-strain endurance and speed tests (5,000 m, 3,000 m, 1,500 m, 800 m, 400 m, and 200 m). During the rest intervals, isocaloric drinks with the same CHO (6,66–7,0 g), but different sugar (ISO1: 2,46 g; ISO2: 5,6 g; syrup: 6,7 g) and electrolyte content were given in a randomized way. The parameters of running performance, body weight, rating of perceived exertion, heart rate, and blood lactate concentration were analyzed. Results: Over the distances (p≥0.10), the results did not show any ergogenic effect of the isotonic drinks in comparison with the syrup–water mixture. There were also no significant differences in terms of rates of perceived exertion (p≥0.26) and the physiological parameters of heart rate (p≥0.30) and blood lactate (p≥0.18) among the groups. Conclusion: During intermittent and repetitive exertion below 30 minutes, homemade energy drinks exhibited the same effects as commercial sports drinks.

Keywords


Running, Athletic Performance, Physical Exertion, Physical Endurance, Dietary Supplements, Dietary Carbohydrates

Full Text:

PDF

References


Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14, 377-381.

Burke, L., & Deakin, V. (2015). Clinical Sports Nutrition (5 ed.). Australia: McGraw-Hill Education.

Burke, L. M., Wood, C., Pyne, D. B., Telford, D. R., & Saunders, P. U. (2005). Effect of carbohydrate intake on half-marathon performance of well-trained runners. International Journal of Sport Nutrition and Exercise Metabolism, 15(6), 573-589. doi:https://doi.org/10.1123/ijsnem.15.6.573

Byars, A., Greenwood, M., Greenwood, L., & Simpson, W. K. (2006). The Effectiveness of a Pre-Exercise Performance Drink (PRX) on Indices of Maximal Cardiorespiratory Fitness. Journal of the International Society of Sports Nutrition, 3(1), 56-59. doi:10.1186/1550-2783-3-1-56

Byars, A., Keith, S., Simpson, W., Mooneyhan, A., & Greenwood, M. (2010). The influence of a pre-exercise sports drink (PRX) on factors related to maximal aerobic performance. Journal of the International Society of Sports Nutrition, 7, 12-12. doi:10.1186/1550-2783-7-12

Castell, L. M., Stear, S. J., & Burke, L. M. (2015). Nutritional Supplements in Sport, Exercise and Health: An A-Z Guide. Abingdon: Routledge.

Coletta, A., Thompson, D. L., & Raynor, H. A. (2013). The influence of commercially-available carbohydrate and carbohydrate-protein supplements on endurance running performance in recreational athletes during a field trial. Journal of the International Society of Sports Nutrition, 10, 17-17. doi:10.1186/1550-2783-10-17

Colombani, P. C., Mannhart, C., & Mettler, S. (2013). Carbohydrates and exercise performance in non-fasted athletes: A systematic review of studies mimicking real-life. Nutrition Journal, 12, 16-16. doi:10.1186/1475-2891-12-16

Coombes, J. S., & Hamilton, K. L. (2000). The effectiveness of commercially available sports drinks. Sports Medicine, 29(3), 181-209. doi:https://doi.org/10.2165/00007256-200029030-00004

Coyle, E. F. (1991). Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. Journal of Sports Sciences, 9(sup1), 29-52. doi:10.1080/02640419108729865

Coyle, E. F. (2004). Fluid and fuel intake during exercise. Journal of Sports Sciences, 22(1), 39-55. doi:10.1080/0264041031000140545

Davis, J. M., Welsh, R. S., & Alerson, N. A. (2000). Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. International Journal of Sport Nutrition and Exercise Metabolism, 10(4), 476-485.

Davison, G. W., McClean, C., Brown, J., Madigan, S., Gamble, D., Trinick, T., & Duly, E. (2008). The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res Sports Med, 16(3), 155-166. doi:10.1080/15438620802103155

de Ataide e Silva, T., Di Cavalcanti Alves de Souza, M. E., de Amorim, J. F., Stathis, C. G., Leandro, C. G., & Lima-Silva, A. E. (2014). Can carbohydrate mouth rinse improve performance during exercise? A systematic review. Nutrients, 6(1), 1-10. doi:10.3390/nu6010001

El-Sayed, M. S., Balmer, J., & Rattu, A. J. M. (1997). Carbohydrate ingestion improves endurance performance during a 1h simulated cycling time trial. Journal of Sports Sciences, 15(2), 223-230. doi:10.1080/026404197367506

Heneghan, C., Howick, J., O'Neill, B., Gill, P. J., Lasserson, D. S., Cohen, D., . . . Thompson, M. (2012). The evidence underpinning sports performance products: a systematic assessment. BMJ Open, 2(4), 1-6. doi:10.1136/bmjopen-2012-001702

James, W. P. T., & Schofield, E. C. (1990). Human energy requirements. A manual for planners and nutritionists. Oxford, UK: Oxford Medical Publications under arrangement with FAO.

Jentjens, R., & Jeukendrup, A. E. (2005). High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. British Journal of Nutrition, 93(4), 485-492. doi:10.1079/BJN20041368

Jeukendrup, A., Brouns, F., Wagenmakers, A. J., & Saris, W. H. (1997). Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. International Journal of Sports Medicine, 18(2), 125-129. doi:10.1055/s-2007-972607

Jeukendrup, A., & Gleeson, M. (2010). Sport nutrition: an introduction to energy production and performance. Leeds: Human Kinetics.

Jeukendrup, A. E., Currell, K., Clarke, J., Cole, J., & Blannin, A. K. (2009). Effect of beverage glucose and sodium content on fluid delivery. Nutrition and Metabolism, 6, 9-9. doi:10.1186/1743-7075-6-9

Kerksick, C. M., Arent, S., Schoenfeld, B. J., Stout, J. R., Campbell, B., Wilborn, C. D., . . . Antonio, J. (2017). International society of sports nutrition position stand: nutrient timing. Journal of the International Society of Sports Nutrition, 14, 1-21. doi:10.1186/s12970-017-0189-4

Khanna, G. L., & Manna, I. (2005). Supplementary effect of carbohydrate-electrolyte drink on sports performance, lactate removal & cardiovascular response of athletes. Indian Journal of Medical Research, 121(5), 665-669.

Kreider, R. B., Wilborn, C. D., Taylor, L., Campbell, B., Almada, A. L., Collins, R., . . . Antonio, J. (2010). ISSN exercise & sport nutrition review: research & recommendations. Journal of the International Society of Sports Nutrition, 7, 7-7. doi:10.1186/1550-2783-7-7

Lee, J. K. W., Nio, A. Q. X., Ang, W. H., Law, L. Y. L., & Lim, C. L. (2011). Effects of ingesting a sports drink during exercise and recovery on subsequent endurance capacity. European Journal of Sport Science, 11(2), 77-86. doi:10.1080/17461391.2010.487115

Mora-Rodriguez, R., & Hamouti, N. (2012). Salt and fluid loading: effects on blood volume and exercise performance. In Acute Topics in Sport Nutrition, 59, 113-119. doi:10.1159/000341945

Nassis, G. P., Williams, C., & Chisnall, P. (1998). Effect of a carbohydrate-electrolyte drink on endurance capacity during prolonged intermittent high intensity running. British Journal of Sports Medicine, 32(3), 248-252.

Newell, M. L., Hunter, A. M., Lawrence, C., Tipton, K. D., & Galloway, S. D. (2015). The Ingestion of 39 or 64 g*h(-1) of Carbohydrate is Equally Effective at Improving Endurance Exercise Performance in Cyclists. International journal of sport nutrition and exercise metabolism, 25(3), 285-292. doi:10.1123/ijsnem.2014-0134

Nicholas, C. W., Williams, C., Lakomy, H. K., Phillips, G., & Nowitz, A. (1995). Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. Journal of Sports Sciences, 13(4), 283-290. doi:10.1080/02640419508732241

Patterson, S. D., & Gray, S. C. (2007). Carbohydrate-Gel Supplementation and Endurance Performance During Intermittent High-Intensity Shuttle Running. International Journal of Sport Nutrition and Exercise Metabolism, 17, 445-455.

Phillips, S. M., Turner, A. P., Gray, S., Sanderson, M. F., & Sproule, J. (2010). Ingesting a 6% carbohydrate-electrolyte solution improves endurance capacity, but not sprint performance, during intermittent, high-intensity shuttle running in adolescent team games players aged 12-14 years. European Journal of Applied Physiology and Occupational Physiology, 109(5), 811-821. doi:10.1007/s00421-010-1404-z

Phillips, S. M., Turner, A. P., Sanderson, M. F., & Sproule, J. (2012). Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol. European Journal of Applied Physiology, 112(3), 1133-1141. doi:10.1007/s00421-011-2067-0

Pöchmüller, M., Schwingshackl, L., Colombani, P. C., & Hoffmann, G. (2016). A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. Journal of the International Society of Sports Nutrition, 13, 27. doi:10.1186/s12970-016-0139-6

Pottier, A., Bouckaert, J., Gilis, W., Roels, T., & Derave, W. (2010). Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scandinavian Journal of Medicine and Science in Sports, 20(1), 105-111. doi:10.1111/j.1600-0838.2008.00868.x

Qin, L., Wang, Q. R., Fang, Z. L., Wang, T., Yu, A. Q., Zhou, Y. J., . . . Yi, M. Q. (2017). Effects of Three Commercially Available Sports Drinks on Substrate Metabolism and Subsequent Endurance Performance in a Postprandial State. Nutrients, 9(4). doi:10.3390/nu9040377

Raschka, C. & Ruf, S. (2015). [Sports and Nutrition]. Stuttgart: Thieme.

Roberts, J. D., Tarpey, M. D., Kass, L. S., & Roberts, M. G. (2012). An investigative study into the influence of a commercially available carbohydrate-protein-electrolyte beverage on short term repeated exercise performance. Journal of the International Society of Sports Nutrition, 9, 5-5. doi:10.1186/1550-2783-9-5

Rollo, I., & Williams, C. (2009). Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hr running performance test. International journal of sport nutrition and exercise metabolism, 19(6), 645-658.

Snell, P. G., Ward, R., Kandaswami, C., & Stohs, S. J. (2010). Comparative effects of selected non-caffeinated rehydration sports drinks on short-term performance following moderate dehydration. Journal of the International Society of Sports Nutrition, 7, 28. doi:10.1186/1550-2783-7-28

Stellingwerff, T., & Cox, G. R. (2014). Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Applied Physiology, Nutrition, and Metabolism, 39(9), 998-1011. doi:10.1139/apnm-2014-0027

Utter, A. C., Kang, J. I. E., Robertson, R. J., Nieman, D. C., Chaloupka, E. C., Suminski, R. R., & Piccinni, C. R. (2002). Effect of carbohydrate ingestion on ratings of perceived exertion during a marathon. Medicine and Science in Sports and Exercise, 34(11). doi:10.1249/01.MSS.0000035055.01069.5C

van Nieuwenhoven, M. A., Brouns, F., & Kovacs, E. M. (2005). The effect of two sports drinks and water on GI complaints and performance during an 18-km run. International Journal of Sports Medicine, 26(4), 281-285. doi:10.1055/s-2004-820931

Vandenbogaerde, T. J., & Hopkins, W. G. (2011). Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Medicine, 41(9), 773-792. doi:10.2165/11590520-000000000-00000

Welsh, R. S., Davis, J. M., Burke, J. R., & Williams, H. G. (2002). Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Medicine and Science in Sports and Exercise, 34(4), 723-731.

World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. Journal of the American Medical Association, 310, 2191-2194.




DOI: http://dx.doi.org/10.7575/aiac.ijkss.v.7n.1p.1

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2020 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.