Estimation of the Aerobic-anaerobic Transition by Heart Rate Variability in Athletes and Non-athletes Subjects

Antonio López-Fuenzalida, David Laroze N., Francisco José Berral de la Rosa, Jorge Cancino L.

Abstract


Background: The estimate of aerobic-anaerobic threshold is commonly used for exercise prescription in athletes and non-athletes subjects; however, the methods currently used are expensive, and some of them use invasive techniques. The analysis of changes in heart rate variability during exercise may contribute to the introduction of a novel methodology to estimate the aerobic-anaerobic metabolic transition. Objective: The purpose of this study was to estimate the heart rate variability threshold (HRVT) through the Discrete Wavelet Transform (DWT) and compare the exercise intensities at which this happens to the moment when the aerobic-anaerobic metabolic transition occurs, estimated by the ventilatory threshold 2 (VT2) in athletes and non-athletes. Methods: 24 male subjects were enrolled (12 athletes; 12 non-athletes). Ventilatory parameters and R-R intervals were recorded breath by breath in a maximal incremental intensity exercise. HRVT was estimated through DWT and the VT2 was determined by 5 indicators: respiratory quotient ≥1.0, non-linear increase of the VE and VCO2, decrease of the PETCO2 and increase of the PETO2. Reserve heart rate frequency percentages (%RHRF) are determined, compared and correlated to VT2 (%RHRF-VT2) and HRVT (%RHRF-HRVT). We used a significance level of p<0.05 for all our analysis. Results: The results showed that there is no significant difference between the %RHRF-VT and %RHRF-HRVT in the assessed subject groups (total, athletes, non-athletes). There is a correlation between %RHRF-VT and %RHRF-HRVT in the whole group (r=0.91; p<0.001), athletes (r=0.84; p<0,001) and non-athletes (r=0.88; p<0,001). Conclusion: We conclude that the aerobic-anaerobic metabolic transition (i.e. VT2) during an incremental maximal exercise can be estimated through the HRVT measured by the DWT in athletes and non-athletes.

Keywords: non-linear analysis, anaerobic threshold, exercise test


Full Text:

PDF

References


Accurso, V., Shamsuzzaman, A. S. M., & Somers, V. K. (2001). Rhythms, rhymes, and reasons—spectral oscillations in neural cardiovascular control. Auton Neurosci, 90(1), 41-46.

Amara, C. E., & Wolfe, L. A. (1998). Reliability of noninvasive methods to measure cardiac autonomic function. Can J Appl Physiol, 23(4), 396-408.

Ansorge, E. J., Shah, S. H., Augustyniak, R. A., Rossi, N. F., Collins, H. L., & O'Leary, D. S. (2002). Muscle metaboreflex control of coronary blood flow. Am J Physiol Heart Circ Physiol, 283(2), H526-H532.

Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Med, 33(12), 889-919.

Belova, N. Y., Mihaylov, S. V., & Piryova, B. G. (2007). Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability. Auton Neurosci, 131(1), 107-122.

Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J.-P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabi, 15(6), 726-734. http://dx.doi.org/10.1097/HJR.0b013e328304fed4.

Cohen, A. (1994). Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix+ 357 pp. Journal of Approximation Theory, 78(3), 460-461.

Cottin, F., Leprêtre, P. M., & Lopes, P. (2006). Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med, 27(12), 959-967

Cottin, F., Médigue, C., Lopes, P., Leprêtre, P. M., Heubert, R., & Billat, V. (2007). Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med, 28(4), 287-294.

Cottin, F., Papelier, Y., & Escourrou, P. (1999). Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise. Int J Sports Med, 20(4), 232-238.

De la Cruz Torres, B., López, C. L., & Orellana, J. N. (2008). Analysis of heart rate variability at rest and during aerobic exercise: a study in healthy people and cardiac patients. Br J Sports Med, 42(9), 715-720. http://dx.doi.org/10.1136/bjsm.2007.043646.

Dewey, F. E., Freeman, J. V., Engel, G., Oviedo, R., Abrol, N., Ahmed, N., . . . Froelicher, V. F. (2007). Novel predictor of prognosis from exercise stress testing: heart rate variability response to the exercise treadmill test. Am Heart J, 153(2), 281-288.

Drago, S., Bergerone, S., Anselmino, M., Varalda, P. G., Cascio, B., Palumbo, L., . . . Trevi, P. G. (2007). Depression in patients with acute myocardial infarction: influence on autonomic nervous system and prognostic role. Results of a five-year follow-up study. Int J Cardiol, 115(1), 46-51.

Elghozi, J.-L., Girard, A., & Laude, D. (2001). Effects of drugs on the autonomic control of short-term heart rate variability. Auton Neurosci, 90(1), 116-121.

Freeman, J. V., Dewey, F. E., Hadley, D. M., Myers, J., & Froelicher, V. F. (2006). Autonomic nervous system interaction with the cardiovascular system during exercise. Prog Cardiovasc Dis, 48(5), 342-362.

Freeman, R. (2006). Assessment of cardiovascular autonomic function. Clin Neurophysiol, 117(4), 716-730.

Hossen, A., Jaju, D., Al-Ghunaimi, B., Al-Faqeer, B., Al-Yahyai, T., Hassan, M. O., & Al-Abri, M. (2012). Classification of sleep apnea using wavelet-based spectral analysis of heart rate variability. Technol Health Care, 21(4), 291-303. http://dx.doi.org/10.3233/THC-130724.

Iellamo, F. (2001). Neural mechanisms of cardiovascular regulation during exercise. Auton Neurosci, 90(1), 66-75.

Iellamo, F., Pizzinelli, P., Massaro, M., Raimondi, G., Peruzzi, G., & Legramante, J. M. (1999). Muscle metaboreflex contribution to sinus node regulation during static exercise Insights from spectral analysis of heart rate variability. Circulation, 100(1), 27-32.

Johansson, B. (2009). Effects of Functional Water on Heart Rate, Heart Rate Variability, and Salivary Immunoglobulin A in Healthy Humans: A Pilot Study. J Altern Complement Med, 15(8), 871-877. http://dx.doi.org/10.1089/acm.2008.0336.

Karapetian, G. K., Engels, H. J., & Gretebeck, R. J. (2008). Use of heart rate variability to estimate LT and VT. Int J Sports Med, 29(8), 652-657. http://dx.doi.org/10.1055/s-2007-989423.

Karvonen, M. J. (1957). The effects of training on heart rate. A longitudinal study. Ann Ned Exp Biol Fenn, 35, 307-315.

Knoepfli, B., Riddell, M. C., Ganzoni, E., Burki, A., Villiger, B., & Von Duvillard, S. P. (2004). Off seasonal and pre-seasonal assessment of circulating energy sources during prolonged running at the anaerobic threshold in competitive triathletes. Br J Sports Med, 38(4), 402-407.

Manso, J. M. G. (2013). Aplicación de la variabilidad de la frecuencia cardiaca al control del entrenamiento deportivo: análisis en modo frecuencia. Arch Med Deporte, 30(1), 43-51.

Marks, B. L., & Lightfoot, J. T. (1999). Reproducibility of resting heart rate variability with short sampling periods. Can J Appl Physiol, 24(4), 337-348.

Meyer, T., Lucia, A., & Earnest, C. P. (2005). Submaximal Parameters±Theory and Application. Int J Sports Med, 26, 1-11.

Nakamura, Y., Yamamoto, Y., & Muraoka, I. (1993). Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol, 74(2), 875-881.

Pichot, V., Gaspoz, J.-M., Molliex, S., Antoniadis, A., Busso, T., Roche, F., . . . Barthélémy, J.-C. (1999). Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J Appl Physiol, 86(3), 1081-1091.

Sartor, F., Vailati, E., Valsecchi, V., Vailati, F., & La Torre, A. (2013). Heart rate variability reflects training load and psychophysiological status in young elite gymnasts. J Strength Cond Res, 27(10), 2782-2790. http://dx.doi.org/10.1519/JSC.0b013e31828783cc.

Sone, R., Yamazaki, F., Fujii, N., Fukuoka, Y., & Ikegami, H. (1996). Respiratory variability in RR interval during sinusoidal exercise. Eur J Appl Physiol Occup Physiol, 75(1), 39-46.

Thayer, J. F., & Sternberg, E. (2006). Beyond heart rate variability. Ann N Y Acad Sci, 1088(1), 361-372.

Verlinde, D., Beckers, F., Ramaekers, D., & Aubert, A. E. (2001). Wavelet decomposition analysis of heart rate variability in aerobic athletes. Auton Neurosci, 90(1), 138-141.

Yamamoto, Y., Hughson, R. L., & Peterson, J. C. (1991). Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol, 71(3), 1136-1142.


Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2013-2020 (CC-BY) Australian International Academic Centre PTY.LTD.

International Journal of Kinesiology and Sports Science

You may require to add the 'aiac.org.au' domain to your e-mail 'safe list’ If you do not receive e-mail in your 'inbox'. Otherwise, you may check your 'Spam mail' or 'junk mail' folders.