Research Article

Evaluation of Wavelet–Functions for Broken Rotor Bar Detection of Induction Machine Using Coefficient–Related Features

Mohammad Rezazadeh Mehrjou1,∗, Norman Mariun1, Mahdi Karami1, Norhisam Misron1, Saman Toosi1, Mohammad Reza Zare1,2

(1) Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor, Malaysia.
(2) Department of Electrical and Electronic Engineering, Islamic Azad University Majlesi Branch, Majlesi, Iran.

Abstract. Early fault detection of the induction machine is necessary in order to guarantee its stable and high performance. To evaluate the motor’s health and detect existence of any failure in it, any motor parameter is first measured using condition monitoring techniques. The raw signal acquired is then interpret applying signal processing and data analysis procedures. Wavelet analysis of the motor current has been considered as an effective fault detection method. However, there are different types of the wavelet function that can be used for signal decomposition. This paper intends to investigate the ability of different types of wavelet functions for early broken rotor bar detection. Different harmonic components introduced by this fault such as maximum wavelet coefficient, left and right gradients of the maximum coefficient, were extracted and used as a characteristic signature for fault detection. The results indicate that the reliability of the fault detection depends on the type of wavelet function applied for decomposition of the signal.

Keywords: induction machine, fault, broken rotor bar, current signature, signal processing, wavelet analysis.

1 Introduction

A wide variety of types for squirrel cage induction machines (SCIMs) facilitate industrial tasks and productions. In industrial area, SCIMs are subjected to electrical, mechanical and environmental stresses that cause broken rotor bar (BRB) occurs, although SCIMs have rugged structure. The presence of BRB brings about secondary malfunctions that reduces the efficiency of the motor and hence increase the operational cost[1]. Accordingly, early detection of rotor failures, specially BRB, is crucial[2]. Any problem or irregularity in the machine can be detected at an early stage by applying a suitable condition monitoring accompanied with an effective signal processing method. Several condition monitoring techniques for SCIMs fault detection have been reported and developed[2,3]. Among various condition monitoring techniques, motor current signature analysis has been widely employed for BRB detection[4–7]. However, the fault detection will fail if an effective signal processing method is not applied. A raw signal measured by a suitable sensor goes through a signal processing to generate parametric features associated with the fault under observation. These features, generally known as “fault signature”, are sensitive to the presence of the failure in motor. Fundamentally, the main aspects for the accurate detection and extraction of these features are based on signal processing. The technique applied to the signal must have high sensitivity to the features. It must be able to determinate the relationship between the fault signature and its severity as well[8].

Recently, wavelet analysis that allows simultaneous time and frequency decomposition of a signal has drawn the great attention. Nevertheless, the results of analysis depend on the type of wavelet function applied for signal decomposition. Besides that, various fault signatures can be extracted by applying wavelet decomposition to the raw current signal. The objective of this research is to examine using different types of wavelet functions in wavelet decomposition of the stator current signal. A variety of fault features are extracted and investigated for early detection of BRB.

2 Motor Current Signature Analysis

The current drawn by a healthy induction motor contains a single component in the spectrum of stator current. Existence of any asymmetry in induction motor generates extra component in the spectrum which is corresponding to the fault. For example, when a rotor breaks, current can not flow through it, and thus no magnetic flux is generated around that bar. Therefore an asymmetry is generated in the magnetic field of rotor by producing a non–zero backward rotating field. This phenomenon can be observed in the stator spectrum at the
frequency corresponding to twice of the slip frequency, as \[f_b = (1 \pm 2k_s)f_s \] (1)

where \(f_b \) is the frequency of the current related to BRB and/or end–ring fault; \(s \) is the slip; \(k \) is a constant value and \(f \) is the supply frequency.

Frequency domain analysis, based on Fourier transform, is the most common signal processing technique used for \(f_b \) extraction. However, there are some inconsistencies regarding the ability of Fourier based analysis for early fault detection \[[11,12] \] and therefore advanced signal processing techniques were proposed for more accurate and reliable fault detection. These techniques, such as wavelet transform analysis, are based on simultaneous time and frequency analysis of the signal. Wavelet transform analysis is classified to continuous and discrete. Continuous wavelet transform (CWT) is a sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function. In this procedure, the wavelet coefficient at all scales is calculated that produces a lot of data and obviously it takes a long time \[[13] \]. Discrete wavelet transform analyses the signals with a smaller set of scales and specific number of translations at each scale. Mallat \[[14] \] introduced a practical version of discrete wavelet transform, called wavelet multi–resolution analysis. This algorithm is based on the fact that, one signal is decomposed into series of small waves belonging to a wavelet family. A discrete signal \(f(t) \) could be decomposed as

\[
f[t] = \sum_{k} A_{m_0,n}[t] + \sum_{m=m_0}^{\infty} \sum_{n} D_{m,n}[t] \]

(2)

where \(\phi \) is the scaling functions, deduced by father wavelet and \(\psi \) is the wavelet functions, deduced by mother wavelet, \(A \) is approximate coefficients and \(D \) is detail coefficients. The multi–resolution analysis commonly uses discrete dyadic wavelet, in which scales and positions are based on powers of two. In this approach, the scaling function is represented by the following mathematical expression:

\[
\phi_{m,n}[t] = 2^{-m} \phi(2^{-m} t - n) \]

(3)

i.e. \(\phi_{m,n} \) is the scaling function at a scale of \(2^{m} \) shifted by \(n \). Wavelet function is also defined as

\[
\psi_{m,n}[t] = 2^{-m} \psi(2^{-m} t - n) \]

(4)

i.e. \(\psi_{m,n} \) is the mother wavelet at a scale of \(2^{m} \) shifted by \(n \).

Generally, approximate coefficients \(A_{m,n} \) are obtained through the inner product of the original signal and the scaling function.

\[
A_{m_0,n} = \int_{-\infty}^{\infty} f(t)\phi_{m_0,n}(t)\,dt \]

(5)

The approximate coefficients decomposed from a discretized signal can be expressed as

\[
A_{m+1,n} = \sum_{n=0}^{N} A_{m,n} \int \phi_{m,n}(t)\psi_{m+1,n}(t)\,dt = \sum_{n} A_{m,n} h[n] \]

(6)

In dyadic approach, the approximation coefficients \(A_{m_0,n} \) are at a scale of \(2^{m_0} \). The filter, \(g[n] \), is a low–pass filter. Similarly the detail coefficients \(D_{m,n} \) can be generally obtained through the inner product of the signal and the complex conjugate of the wavelet function.

\[
D_{m,n} = \int_{-\infty}^{\infty} f(t)\psi_{m,n}^*(t)\,dt \]

(7)

The detail coefficients decomposed from a discretized signal can be expressed as

\[
D_{m+1,n} = \sum_{n=0}^{N} A_{m,n} \int \phi_{m,n}(t)\psi_{m+1,n}(t)\,dt = \sum_{n} A_{m,n} h[n] \]

(8)

\(D_{m,n} \) are the detail coefficients at a scale of \(2^{m} \). The filter, \(h[n] \) is a high–pass filter. The multi–resolution analysis utilizes discrete dyadic wavelet and extract the approximations of the original signal at different levels of resolution. An approximation is a low resolution representation of the original signal. The approximation at a resolution \(2^{-m} \) can be split into an approximation at a coarser resolution \(2^{-m-1} \) and the detail. The detail represents the high frequency contents of the signal. The approximations and details can be determined using low and high pass filters. In the multi–resolution analysis, the approximations are split successively, while the details are never analysed further. The decomposition process can be iterated, with successive approximations being decomposed in turn, hence one signal is broken down into many lower resolution components. This process is called the wavelet decomposition tree as shown in Fig. 1 \[[15] \].

![Fig. 1. Dyadic Wavelet Decomposition Algorithm](image)

Wavelet transform analysis though is proposed as one of the best technique for fault detection, it has some limitation that should be taken into account. For instance, the type of wavelet function determines the result of signal decomposition and various features can be extracted from decomposed signal. Therefore, a comparative study that concentrates on the outcomes of different wavelet functions for early fault detection is essential. This study intends to investigate the effects of the wavelet function and characteristic feature for early BRB detection using wavelet analysis of stator current spectrum.

doi:10.7575/aiac.ijaepr.v.1n.1p.18
3 Case study

To examine the reliability of wavelet transform analysis for early detection of BRB, two motors, one motor with no broken bar and the other with one broken bar, were observed under different levels of load (35%, 50% and 80% full load). The induction machine was coupled to a generator acting as a load. Experimental data including torque, speed, current and was acquired through the appropriate sensors. Fig. 2 demonstrates the experimental setup used in this study. The main characteristics of the test motor was star connection, power was 750 W, voltage was 415 V, six poles, primary current was 2.2 A, speed was 1000 rpm and the number of 28 rotor bars.

Before data analysis, the raw current signal was re-sampled by synchronizing the starting origin with phase 0. This preprocessing of the raw current signal is critical since the unsynchronized current phase will give inaccurate detection results [12,16]. The total re-sampled cycles of the signals were five cycles, i.e. about 2400 sampled data were used for analysis.

In the following step, all wavelet functions provided by wavelet tool box in MATLAB were examined to find the suitable Wavelet function, as depicted in Fig. 3. The wavelet functions that generate a decomposed signal with higher energy value in determined level of decomposition were selected for the fault detection.

Three features, including the maximum coefficient value and its gradients, were extracted from wavelet decomposition of current signal using the six wavelet functions selected in the previous step. Each test was repeated 10 times and the average value of the features were calculated and used for further investigation. Fig. 4 depicts the procedure used for wavelet analysis of current signal.
for healthy motor under different levels of load when various types of wavelet function were used

<table>
<thead>
<tr>
<th>Feature</th>
<th>Load (%)</th>
<th>Bior 6.8</th>
<th>Coiflet 2</th>
<th>Coiflet 5</th>
<th>Daub 1</th>
<th>Daub 6</th>
<th>Daub 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left gradient</td>
<td>35</td>
<td>57.23</td>
<td>55.13</td>
<td>30.55</td>
<td>40.45</td>
<td>38.00</td>
<td>53.81</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>57.99</td>
<td>55.84</td>
<td>30.39</td>
<td>41.15</td>
<td>38.18</td>
<td>54.11</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>60.94</td>
<td>58.67</td>
<td>31.72</td>
<td>43.42</td>
<td>40.16</td>
<td>56.84</td>
</tr>
<tr>
<td>Peak value</td>
<td>35</td>
<td>27.56</td>
<td>26.89</td>
<td>26.92</td>
<td>23.03</td>
<td>29.25</td>
<td>32.61</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>28.10</td>
<td>27.40</td>
<td>27.09</td>
<td>23.43</td>
<td>29.37</td>
<td>32.91</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>29.51</td>
<td>28.77</td>
<td>28.43</td>
<td>24.62</td>
<td>30.89</td>
<td>34.49</td>
</tr>
<tr>
<td>Right gradient</td>
<td>35</td>
<td>-32.25</td>
<td>-33.03</td>
<td>-58.92</td>
<td>-34.26</td>
<td>-57.15</td>
<td>-52.25</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-32.69</td>
<td>-33.46</td>
<td>-59.47</td>
<td>-34.97</td>
<td>-57.64</td>
<td>-53.06</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>-34.07</td>
<td>-34.88</td>
<td>-62.48</td>
<td>-36.74</td>
<td>-60.47</td>
<td>-55.61</td>
</tr>
</tbody>
</table>

Table 2. Characteristic features of the 8th detail decomposition for faulty motor under different levels of load when various types of wavelet function were used

<table>
<thead>
<tr>
<th>Feature</th>
<th>Load (%)</th>
<th>Bior 6.8</th>
<th>Coiflet 2</th>
<th>Coiflet 5</th>
<th>Daub 1</th>
<th>Daub 6</th>
<th>Daub 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left gradient</td>
<td>35</td>
<td>57.68</td>
<td>55.42</td>
<td>28.63</td>
<td>40.61</td>
<td>36.38</td>
<td>52.58</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>58.34</td>
<td>56.18</td>
<td>29.54</td>
<td>41.26</td>
<td>37.57</td>
<td>53.57</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>63.58</td>
<td>61.15</td>
<td>34.53</td>
<td>45.22</td>
<td>42.75</td>
<td>59.83</td>
</tr>
<tr>
<td>Peak value</td>
<td>35</td>
<td>28.75</td>
<td>27.89</td>
<td>26.31</td>
<td>23.28</td>
<td>26.64</td>
<td>32.45</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>28.86</td>
<td>28.13</td>
<td>26.89</td>
<td>23.57</td>
<td>29.15</td>
<td>32.77</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>30.66</td>
<td>29.88</td>
<td>30.82</td>
<td>25.94</td>
<td>32.84</td>
<td>36.31</td>
</tr>
<tr>
<td>Right gradient</td>
<td>35</td>
<td>-34.23</td>
<td>-34.81</td>
<td>-58.68</td>
<td>-36.01</td>
<td>-57.13</td>
<td>-53.79</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-34.98</td>
<td>-34.93</td>
<td>-59.44</td>
<td>-36.05</td>
<td>-57.88</td>
<td>-53.92</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>-35.44</td>
<td>-36.25</td>
<td>-60.73</td>
<td>-39.25</td>
<td>-63.52</td>
<td>-58.56</td>
</tr>
</tbody>
</table>

As an example, Fig. 5 illustrates the wavelet coefficients of the 8th detail for healthy and faulty motor using Biorthogonal 6.8 at different levels of load. Wavelet analysis using Biorthogonal 6.8 generates a set of 26 coefficients for each case. Fig. 5 shows that for all cases, the 16th coefficient has the maximum value. Therefore, the 16th coefficient and its gradients (left and right gradient) were selected as features for BRB detection. The left gradient corresponds to the slope of line drawn from 16th coefficient to the previous one (15th). The right gradient is the line slope between maximum coefficient (16th coefficient) and the 17th coefficient.

In a similar way, other types of wavelet function such as Coiflet 2, Coiflet 5, Daubechies 1, Daubechies 6 and Daubechies 10 were used for signal analysis. The number of wavelet coefficients depends upon the type of wavelet function used for analysis of the signal. The maximum value for coefficient and its gradients were used as signature for BRB detection. Fig. 6 illustrates the zoom-in demonstration around the maximum coefficient determined for each wavelet function. Besides maximum coefficient and its gradients, the energy value of the decomposed signal at 8th detail was determined and considered as a fault characteristic feature. Table 1 and Table 2 present the mean values for the characteristic features of the 8th detail decomposition for healthy and faulty machines under different levels of load when various types of wavelet function were applied for signal decomposition.

It has been proven in case of fault presence in the motor, the fault signatures have higher values than the one for healthy condition[17,18]. However, the data presented in Table 1 and Table 2 indicate some inconsistencies. For instance, that, when Coiflet 5, Daubechies 6 and Daubechies 10 were used, values for left gradient and maximum coefficient for faulty motor were smaller than healthy motor. The same observation was made for the right gradient when Coiflet 5 and Daubechies 6 were used as a wavelet function. No such inconsistencies were observed when Biorthogonal 6.8, Coiflet 2 and Daubechies 1 were applied for wavelet decomposition of the signal. These observations express that not only the type of wavelet function used for signal analysis influence the result but also the characteristic feature needs to be taken into account.

Since just three wavelet functions, Biorthogonal 6.8, Coiflet 2 and Daubechies 1, showed reliable information, these three were further investigated. The standard deviations of all features for these three wavelet functions were computed as presented in Table 3. Comparatively, Daubechies 1 had smaller standard deviation that indicates the sampled data had smaller dispersion from the average. Therefore, the characteristic features obtained from decomposition of current signal using Daubechies 1 were more reliable to be used for incipient fault detection in SCIM than Biorthogonal 6.8 and Coiflet 2. In this study, it has been proven that there is a significant difference in ability of wavelet functions for accurate signal analysis and interpretation. Therefore, the arbitrary selection of wavelet function for wavelet analysis of signal cannot provide reliable information for fault detection in motor. Moreover, it is recommended that different char-

Table 3. Statistical parameters computed for characteristic features obtained from wavelet analysis of the current signal using Biorthogonal 6.8 and Daubechies 1
Fig. 6. The zoom-in graph around the maximum wavelet coefficient for healthy and faulty motors using a) Biorthogonal 6.8, b) Coiflet 2, c) Coiflet 5, d) Daubechies 1, e) Daubechies 6, f) Daubechies 10. Characteristic features to be selected and observed as the accuracy of the monitoring will be enhanced.

4 Conclusion

In this study, different types of wavelet functions were examined for early detection of BRB in SCIM. The functions were applied to decompose the current signal, and compared in screening the features related to the present fault. The characteristic features observed were the maximum wavelet coefficients, left and right gradients of the maximum coefficient. This study proved that the types of wavelet function used for signal analysis influence the reliability of the diagnostic method. Among different wavelet functions examined in this research for current signal decomposition, Daubechies 1 provided much more reliable information for early detection of BRB. An increase in all characteristic features were observed for faulty motor compared to the healthy motor that worked under similar level of the load. Besides that, observing different characteristic features enhances the accuracy and reliability of the fault detection.

Acknowledgement

The authors gratefully acknowledge Universiti Putra Malaysia for granting the Research University Grant for conducting this work.

REFERENCES

chines using higher order spectral analysis,” *ISA transactions*, 2012.

